Opracowała: Monika Grudzińska - Czerniecka

Slides:



Advertisements
Podobne prezentacje
Ekonometria WYKŁAD 10 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Advertisements

STOSOWANIE PROCENTÓW W ŻYCIU CODZIENNYM. Procenty na co dzień  kredyty i lokaty w bankach są na określony procent.
Niepewności pomiarowe. Pomiary fizyczne. Pomiar fizyczny polega na porównywaniu wielkości mierzonej z przyjętym wzorcem, czyli jednostką. Rodzaje pomiarów.
Cel analizy statystycznej. „Człowiek –najlepsza inwestycja”
Ryzyko a stopa zwrotu. Standardowe narzędzia inwestowania Analiza fundamentalna – ocena kondycji i perspektyw rozwoju podmiotu emitującego papiery wartościowe.
OBLICZANIE PROCENTU Z LICZBY. Co to jest procent? 1 % z liczby to liczby.
Rozwiązywanie zadań tekstowych za pomocą równań, nierówności i układów równań Radosław Hołówko Konsultant: Agnieszka Pożyczka.
Zmienne losowe Zmienne losowe oznacza się dużymi literami alfabetu łacińskiego, na przykład X, Y, Z. Natomiast wartości jakie one przyjmują odpowiednio.
Analiza tendencji centralnej „Człowiek – najlepsza inwestycja”
Przygotowały: Laura Andrzejczak oraz Marta Petelenz- Łukasiewicz z klasy 2”D”
Funkcja liniowa Przygotował: Kajetan Leszczyński Niepubliczne Gimnazjum Przy Młodzieżowym Ośrodku Wychowawczym Księży Orionistów W Warszawie Ul. Barska.
Populacje, zmienne, skale, rozkłady liczebności Metodologia badań w naukach behawioralnych I.
W KRAINIE TRAPEZÓW. W "Szkole Myślenia" stawiamy na umiejętność rozumowania, zadawania pytań badawczych, rozwiązywania problemów oraz wykorzystania wiedzy.
RAPORT Z BADAŃ opartych na analizie wyników testów kompetencyjnych przeprowadzonych wśród uczestników szkoleń w związku z realizacją.
To znaczy, że składa się z dwóch identycznych części, które można na siebie nałożyć. Na przykład człowiek (w niektórych miejscach) jest takim stworem.
Matematyka przed egzaminem czyli samouczek dla gimnazjalisty Przygotowała Beata Czerniak FUNKCJE.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
Opracowanie Joanna Szymańska Konsultacja Bożena Hołownia.
Obliczanie procentu danej wielkości Radosław Hołówko.
Nasza szkoła w liczbach Dane zebrane przez uczniów klasy IV w styczniu 2010 r.
Jak tworzymy katalog alfabetyczny? Oprac.Regina Lewańska.
Dorota Kwaśniewska OBRAZY OTRZYMYWA NE W SOCZEWKAC H.
WYNIKI ANKIETY: Co wiesz o elektrośmieciach?. Podstawowe informacje Termin przeprowadzenia badania ankietowego: r. – r. Cel badania:
O PARADOKSIE BRAESSA Zbigniew Świtalski Paweł Skałecki Wydział Matematyki, Informatyki i Ekonometrii Uniwersytet Zielonogórski Zakopane 2016.
Opracowała: wicedyrektor Monika wołyńska, listopad 2016
ANALIZA WYNIKÓW DIAGNOZY WSTĘPNEJ
Opis, analiza i ocena procesu
Zajęcia pozalekcyjne w ramach działalności Szkolnych Klubów Sportowych
Test analizy wariancji dla wielu średnich – klasyfikacja pojedyncza
Funkcje jednej zmiennej
ANALIZA ABC/XYZ Zajęcia Nr 8.
kapitałem intelektualnym w Warszawskim Uniwersytecie Medycznym
Młodzież a Narkotyki Rozpoznanie zjawiska narkomanii wśród młodzieży Tarnobrzeskiej Konferencja Maria Nagaba - Wójcik.
PROCENTY Powtórzenie wiadomości o procentach.
SYSTEM KWALIFIKACJI, AWANSÓW I SPADKÓW
terminologia, skale pomiarowe, przykłady
Zastosowania programu MS Excel 2013 w matematyce
Miejsce zerowe i znak funkcji w przedziale
JAK OBLICZYĆ DATĘ WIELKANOCY?
Liczby pierwsze.
ZBIÓR WARTOŚCI WARTOŚĆ NAJMNIEJSZA WARTOŚĆ NAJWIĘKSZA
Przybliżenia dziesiętne liczb rzeczywistych
Modele SEM założenia formalne
ALGORYTMY I STRUKTURY DANYCH
Odczytywanie diagramów
Funkcja – definicja i przykłady
Wstęp do Informatyki - Wykład 3
POLE KOŁOA I DŁUGOŚĆ OKRĄG
Materiały pochodzą z Platformy Edukacyjnej Portalu
Produkt i dochód narodowy
Ekonometria stosowana
Przewodnik w Świecie Statystyki !!!
Klasyfikacja ŚRódroczna w Gimnazjum nr 11 w Toruniu
Weryfikacja hipotez statystycznych
Problem Plecakowy (Problem złodzieja okradającego sklep)
Tematy zadań. W załączeniu plik z danymi.
Nasza szkoła w liczbach
Pisemne dodawanie i odejmowanie liczb naturalnych
Porównywanie średnich prób o rozkładach normalnych (testy t-studenta)
1.
Implementacja rekurencji w języku Haskell
Znajdowanie liczb pierwszych w zbiorze
REGRESJA WIELORAKA.
ROZKŁADY STATYSTYCZNE ZMIENNYCH MIERZALNYCH
TESTY NIEPARAMETRYCZNE
Program na dziś Wprowadzenie Logika prezentacji i artykułu
Andrzej Majkowski informatyka + 1.
Zapis prezentacji:

Opracowała: Monika Grudzińska - Czerniecka ŚREDNIA ARYTMETYCZNA Opracowała: Monika Grudzińska - Czerniecka

W praktyce stosowane są trzy liczby opisujące zbiór danych: Statystyka To nauka zajmująca się gromadzeniem, badaniem i analizowaniem różnego rodzaju danych. W praktyce stosowane są trzy liczby opisujące zbiór danych: średnia arytmetyczna mediana moda

To suma wszystkich danych podzielona przez ich liczbę. Średnia arytmetyczna To suma wszystkich danych podzielona przez ich liczbę.

Mediana To środkowa wartość w uporządkowanym zbiorze danych (od łacińskiego słowa medianus - środkowy). Mediana to dokładnie jedna wartość. Jeśli są dwie liczby środkowe to należy obliczyć ich średnią arytmetyczną. Uporządkowany zbiór to taki, w którym dane są ustawione od najmniejszej wartości do największej wartości lub odwrotnie.

Moda (dominanta) To najczęściej powtarzająca się wielkość w zbiorze danych (takich wielkości w zbiorze danych może być więcej niż jedna).

Zapiszmy co jest medianą i modą. Przykład 1 Z testu z matematyki liczby zdobytych punktów przez uczniów były następujące: 15, 18, 40, 29, 40, 18, 14, 14, 38, 39, 17, 11, 15, 35, 18, 35, 19, 38, 17, 30. Uporządkujmy zbiór od najmniejszej wartości do największej wartości wtedy jest bardziej przejrzysty i obliczymy średnią arytmetyczną. Zapiszmy co jest medianą i modą.

Przykład 1 średnia arytmetyczna Uporządkujmy zbiór to: 11, 14, 14, 15, 15, 17, 17, 18, 18, 18, 19, 29, 30, 35, 35, 38, 38, 39, 40, 40. Wszystkich danych jest 20, wynika z tego, że wszystkich uczniów piszących test było 20. Średnia arytmetyczna punktów wynosi: 25

Przykład 1 - mediana 11, 14, 14, 15, 15, 17, 17, 18, 18, 18, 19, 29, 30, 35, 35, 38, 38, 39, 40, 40. W tym zbiorze danych są środkowe liczby: 18 i 19 W takim przypadku należy policzyć średnią arytmetyczną tych dwóch liczb: Mediana wyników testu to: 18,5

Przykład 1 - moda 11, 14, 14, 15, 15, 17, 17, 18, 18, 18, 19, 29, 30, 35, 35, 38, 38, 39, 40, 40. W tym zbiorze danych najczęściej powtarza się liczba: 18 (3 razy). W takim przypadku najwięcej było uczniów, którzy zdobyli 18 punktów. Moda (dominanta) wyników testu to: 18.

Statystyka w sytuacjach codziennych średni dochód na osobę, średnia temperatura w danym miesiącu, przeciętny wzrost szesnastolatków, porównywanie wzrostu, wagi, koloru oczu w danej grupie wiekowej, frekwencja uczniów na zajęciach, średnia ocen na semestr.