PODSTAWY MECHANIKI PŁYNÓW

Slides:



Advertisements
Podobne prezentacje
Opracowali: Patryk Klemczak Tomasz Klemczak ODSIECZ WIEDEŃSKA.
Advertisements

Kształtowanie się granic II Rzeczypospolitej
Wykład 4: Systemy nawigacji satelitarnej
WNIOSEK O PRZYZNANIE POMOCY
POGŁĘBIONA OCENA SYTUACJI FINANSOWEJ NA PODSTAWIE ANALIZY WSKAŹNIKOWEJ
Machine learning Lecture 3
Identyfikacja dansylowanych aminokwasów metodą cienkowarstwowej chromatografii na płytkach poliamidowych Gawahir Hassan.
Mechanika kwantowa dla niefizyków
Program Rozwoju Obszarów Wiejskich
Przyszłe zmiany sposobu finansowania zadań oświatowych
Wybrane bloki i magistrale komputerów osobistych (PC)
HELIOTECHNIKA W chwili obecnej jest niekonkurencyjna w porównaniu ze źródłami konwencjonalnymi, ale jest to „czysta energia” dlatego wiąże się z nią wiele.
Tolerancje i pasowania
B R Y Ł Y P L A T O Ń S K I E.
Bankowość Pieniądz Podstawowe informacje o bankach
Weryfikacja hipotez statystycznych
Krakowskie Sympozjum Naukowo-Techniczne
Zasilacze prądu stałego Czyli rzeczywiste źródła napięcia
Prof. nadzw. dr hab. inż. Jarosław Bartoszewicz
Mechanika kwantowa dla niefizyków
Grzegorz Karasiewicz Katedra Marketingu Wydział Zarządzania UW
1 czerwca w zerówce.
„ Mały Miś i polskie tradycje Bożego Narodzenia”
Box Behnken Design w optymalizacji procesu biosyntezy β-karotenu w hodowlach drożdży Rhodotorula rubra Ludmiła Bogacz-Radomska(1), Joanna Harasym(1,2,3),
Projekt z dnia 30 maja 2017 r. Ustawa z dnia …. ……………
Prof. dr hab. Roman Sobiecki Rachunki makroekonomiczne
CAPS LOCK - CERTYFIKOWANE SZKOLENIA JĘZYKOWE I KOMPUTEROWE
Prezentacje wykonali: Marcin Łukasik Wiktor Kołek
GOSPODAROWANIE ZASOBAMI W ORGANIZACJI
Co to jest SSC Master… SSC Master to platforma elektronicznego obiegu, dekretacji i akceptacji dokumentów w organizacji. Dzięki szerokiemu i elastycznemu.
Podstawy pomagania SPPiIK, 2016 Anna Gromińska.
Chemia biopierwiastków
Sedymentacja.
Współczesne kierunki polityki społecznej
Hiszpania,Portugalia,Litwa,Polska,Turcja,Włochy,Chorwacja Desery.
Prawo pracy – ćwiczenia (IX)
Dotarcie do specyficznej grupy docelowej
Sprawozdanie roczne z realizacji Planu działania Krajowej Sieci Obszarów Wiejskich na lata za rok 2016 Warszawa, 26 czerwca 2017 r. Materiał.
Srebrna Małopolska regionalne inicjatywy na rzecz seniorów
Stan Wojenny.
O UTWORZENIE ZWIĄZKU METROPOLITALNEGO W WOJEWÓDZTWIE ŚLĄSKIM
Wojewódzki Inspektorat Ochrony Środowiska w Białymstoku
ZAWODOZNAWSTWO Materiały zrealizowane w ramach projektu
Wykład 8: Złożone problemy przetwarzania mobilnego
Realizacja sprzężenia od siły w układzie sterowania robotem do zastosowań neurochirurgicznych Dorota Marszalik Wieliczka,
Funkcje generujące w kombinatoryce
Ruch turystyczny w Krakowie w 2015 roku
© dr hab. Inż. Paweł Jabłoński
Adsorpcja faza stała/ gazowa lub ciekła faza ciekła/ gazowa lub ciekła
MODELE EPIDEMIOLOGICZNE
Dowody matematyczne - zadania podstawowe
Zagadnienie prawdy Andrzej Łukasik Zakład Ontologii i Teorii Poznania
Ewolucja gwiazd.
Potencjał chemiczny Potencjał chemiczny ma charakter siły uogólnionej,
STAŁE RÓWNOWAGI REAKCJI PROTOLITYCZNYCH
Optymalizacja sieci drogowej propozycja algorytmu
Nie ma innego – Tylko Jezus Mariusz Śmiałek
W ramach stypendium Ministerstwa Kultury i Dziedzictwa Narodowego
R- Punkt referencyjny (wyjściowy) obrabiarki
Parki krajobrazowe na Podlasiu
Publicznej Szkole Podstawowej nr 4 im. Tadeusza Kościuszki
Materiały pochodzą z Platformy Edukacyjnej Portalu
Zasady poprawnej komunikacji – jak uniknąć konfliktów ?
Gimnazjum nr 3 im. J. Chełmońskiego w Zielonej Górze
Moje dziecko i jego potrzeby.
Edukacja psychologiczna
GMINA RUDZINIEC.
Czym jest mowa nienawiści?
Wykład 7 Prawo urzędnicze.
Zapis prezentacji:

PODSTAWY MECHANIKI PŁYNÓW Wykład Nr 4 Statyka płynu - równania równowagi płynów, - prawo Pascala, - prawo naczyń połączonych, - manometry cieczowe.

1. Równania równowagi płynów Siła masowa q(X,Y,Z) i powierzchniowa pA działająca na element płynu dxdydz

(1) (2) (3) Siła powierzchniowa działająca na element płynu Na ścianki płynu wzdłuż osi x działają składowe x,y,x siły powierzchniowej związane z ciśnieniem wewnątrz płynu wynoszące odpowiednio (1) przez analogie wzdłuż osi y i z (2) (3)

(4) (5) (6) Bilans sił masowych i powierzchniowych ma się równoważyć Składowe siły masowej działające na płyn: (4) (5) (6) Bilans sił masowych i powierzchniowych ma się równoważyć

Są to podstawowe równania statyki płynu. Równania (7-9) obustronnie dzielimy przez (dx, dy, dz), a następnie stronami mnożymy odpowiednio przez dx, dy, dz i sumujemy stronami Jeśli założymy, że w płynie ciśnienie jest stałe p=const to dp=0 to z równania (13) otrzymamy równanie powierzchni jednakowego ciśnienia (powierzchni ekwipotencjalnych) Z równania (13) elementarny przyrost ciśnienia wynosi: Są to podstawowe równania statyki płynu.

2. Równowaga w potencjalnym polu sił masowych Załóżmy wielkość skalarną U, której pochodne cząstkowe są składowymi siły masowej q(X,Y,Z). Wielkość U nazywa się potencjałem jednostkowej siły masowej qA. Równanie (15) przyjmuje wówczas postać Wstawiając do (17) definicję różniczki zupełnej dp otrzymamy

Cechy pola potencjalnego: Dla powierzchni ekwipotencjalnych p=const  dp=0 stąd z równania (17) wynika, że dU=0  U=const. Praca w polu potencjalnym jest wykonywana tylko przy przemieszczeniu pomiędzy powierzchniami ekwipotencjalnymi. Praca wzdłuż powierzchni ekwipotencjalnej lub wzdłuż dowolnej krzywej zamkniętej jest równa 0. Siła masowa działa zawsze prostopadle do powierzchni ekwipotencjalnych. Powierzchnie ekwipotencjalnie nigdy się nie przecinają i są zamknięte lub kończą się na ścianach naczynia z płynem Gęstość płynu nie zmienia się wzdłuż powierzchni ekwipotencjalnych d=0 =const. Powierzchnia swobodna cieczy lub powierzchnia rozdziału dwóch niemieszających się płynów jest zawsze powierzchnia ekwipotencjalną. Przykładem pola potencjalnego jest pole grawitacyjne, pole elektrostatyczne.

3. Równowaga przy braku sił masowych – prawo Pascala Blaise Pascal (1623-1662) – francuski matematyk, fizyk i filozof religii. Równania (10-12) zapisane w formie wektorowej mają postać: gdzie jest wektorem jednostkowej siły masowej o składowych X,Y,Z. W przypadku, gdy na płyn nie działają siły masowe (q=0) równanie to przybiera postać:

Prawo Pascala – gdyby na płyn działały wyłącznie siły powierzchniowe (brak sił masowych), to ciśnienie miało by jednakową wartość w każdym punkcie płynu. W warunkach ziemskich (w polu grawitacyjnym) warunek ten spełniony jest w przybliżeniu dla gazów. Ze względu na małą gęstość/masę siły masowe można pominąć. Prawo Pascala stosuje się również dla cieczy, gdy płyn znajduje się pod dużym ciśnieniem, np. w prasach hydraulicznych.

Prasa hydrauliczna

Przykład: Obliczyć jaka powinna być średnica d mniejszego tłoka w prasie hydraulicznej, aby na dużym tłoku otrzymać siłę 100 razy większą niż na małym tłoku. Średnica większego tłoka wynosi D=200 mm. Ile wyniesie ciśnienie w prasie jeśli siła F1 równa się 1000 N ? Ciśnienie w prasie:

4. Równowaga cieczy w polu sił ciężkości Wyznaczyć ciśnienie w cieczy o gęstości  na głębokości h, gdy na powierzchni cieczy występuje ciśnienie bezwzględne p0. W jaki sposób zmienia się ciśnienie z głębokością z? W polu sił ciężkości składowe jednostkowej siły masowej wynoszą:

Po podstawieniu do równania (14), równanie powierzchni jednakowego ciśnienia przyjmuje postać: Powierzchnie ekwipotencjalne w płynie w polu grawitacyjnym stanowią równoległe do siebie poziome płaszczyzny. Elementarny przyrost ciśnienia z (15): po dwustronnym scałkowaniu równania otrzymamy Stałą całkowania c wyznaczamy z warunku brzegowego: zatem: gz – nazywa się ciśnieniem hydrostatycznym. Ciśnienie na głębokości z=h wynosi

Jeśli w zbiorniku znajdują się 3 niemieszające się ciecze o gęstościach 1 < 2 < 3 i odpowiednio wysokościach h1, h2, h3, to ciśnienie w ostatniej cieczy wynosi.

Przykład 1: W zbiorniku znajdują się dwie niemieszające się ciecze o gęstościach i wysokościach odpowiednio równych 1=1000 kg/m3 h1=1 m, 2=13 600 kg/m3 h2=1 m. Obliczyć ciśnienia bezwzględne oraz hydrostatyczne w miejscu styku cieczy oraz na dnie zbiornika. Wyznaczyć kat pochylenia prostej ciśnienia hydrostatycznego. Ciśnienie barometryczne wynosi pb = 1013 hPa. Kąt pochylenia prostej zależy tylko od gęstości cieczy i jest bliski 90.

Przykład 2: Ciecz o gęstość =870 kg/m3 znajduje się w zbiorniku otwartym. Obliczyć na jakiej głębokości x ciśnienie bezwględne będzie 5-cio krotnie wyższe niż na głębokości h=2 m. Ciśnienie barometryczne wynosi pb = 1013 hPa. Ile będzie wynosiło ciśnienie hydrostatyczne na głębokości h=2 m oraz głębokości x? Ciśnienie hydrostatyczne na głębokości h=2 m Ciśnienie hydrostatyczne na głębokości x=57,48 m

5. Prawo naczyń połączonych Prawo naczyń połączonych: Cząstki cieczy należące do tej samej ciągłej masy ciekłej i leżące na tej samej płaszczyźnie poziomej, podlegają działaniu jednakowego ciśnienia. Oznacza to, że w naczyniach połączonych w dwóch dowolnie wybranych przekrojach ciśnienia są takie same jeśli spełnione są dwa warunki: przekroje leżą na tym samym poziomie, w obu przekrojach jest ta sama nieprzerwana ciecz (o tej samej gęstości oraz nierozdzielona inną cieczą lub przegrodą). Otwarte naczynia połączone z jednorodnym płynem Zgodnie z prawem naczyń połączonych:

Zamknięte naczynia połączone z jednorodnym płynem Zgodnie z prawem naczyń połączonych:

Zamknięte naczynia połączone z dwoma jednorodnymi płynami Zgodnie z prawem naczyń połączonych: oraz

Manometr U-rurkowy (zwykły) 6. Manometry cieczowe Manometr U-rurkowy (zwykły) Zgodnie z prawem naczyń połączonych: oraz Gdy m>>

Manometr U-rurkowy odwrócony Zgodnie z prawem naczyń połączonych: oraz Gdy m<<

Mikromanometr z rurką pochyłą Z prawa naczyń połączonych: z bilansu objętości: gdy d<<D

Przykład 1: Mikromanometrem z rurką pochyłą zmierzono podciśnienie o wartości 700 Pa. Obliczyć wychylenie manometru, jeśli przełożenie manometru wynosiło 0,3, gęstość cieczy manometrycznej 870 kg/m3, średnica zbiornika 120 mm, średnica rurki 5 mm. Jaki popełnimy błąd względny w pomiarze podciśnienia jeśli pominiemy bilans objętości? Zmierzone podciśnienie z pominięciem bilansu objętości Błąd względny przy pominięciu bilansu objętości

Evangelista Torricelli (1608-1647) – włoski fizyk i matematyk. Barometr Torricellego Evangelista Torricelli (1608-1647) – włoski fizyk i matematyk. Dla rtęci h  Dla wody h 

Piezometr

Simon Stevin (1548-1620) – flamandzki inżynier, matematyk 7. Paradoks Stevina Simon Stevin (1548-1620) – flamandzki inżynier, matematyk Ciśnienie hydrostatyczne nie zależy od kształtu naczynia!