Sterowanie – metody alokacji biegunów

Slides:



Advertisements
Podobne prezentacje
T47 Podstawowe człony dynamiczne i statyczne
Advertisements

Sterowanie – metody alokacji biegunów II
Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Systemy liniowe stacjonarne – modele wejście – wyjście (splotowe)
Metody Sztucznej Inteligencji 2012/2013Zastosowania systemów rozmytych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Zastosowania.
Podstawy Automatyki 2009/2010 Projektowanie układów sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. 1 Katedra Inżynierii.
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Sterowalność i obserwowalność
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Systemy dynamiczne – przykłady modeli fenomenologicznych
Stabilność Stabilność to jedna z najważniejszych właściwości systemów dynamicznych W większości przypadków, stabilność jest warunkiem koniecznym praktycznego.
Opis matematyczny elementów i układów liniowych
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów regulacji.
Teoria sterowania Wykład 3
Automatyka Wykład 4 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów regulacji (c.d.)
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów, elementów i układów.
AUTOMATYKA i ROBOTYKA (wykład 4)
Podstawowe elementy liniowe
Sterowalność i obserwowalność
Metody Lapunowa badania stabilności
Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność
AUTOMATYKA i ROBOTYKA (wykład 6)
Obserwatory zredukowane
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
AUTOMATYKA i ROBOTYKA (wykład 5)
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Sterowanie – użycie obserwatorów pełnych
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Podstawy automatyki 2011/2012Systemy sterowania - struktury –jakość sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż.
Wykład 22 Modele dyskretne obiektów.
Modele dyskretne obiektów liniowych
Wykład 23 Modele dyskretne obiektów
Teoria sterowania Wykład 9 Transmitancja operatorowa i stabilność liniowych układu regulacji automatycznej.
Sterowanie – działanie całkujące
Obserwowalność i odtwarzalność
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
Schematy blokowe i elementy systemów sterujących
Sterowanie – użycie obserwatorów pełnych
Sterowanie – metody alokacji biegunów III
Drgania punktu materialnego
Modelowanie i identyfikacja 2013/2014 Identyfikacja rekursywna i nieliniowa I 1 Katedra Inżynierii Systemów Sterowania  Kazimierz Duzinkiewicz, dr hab.
Teoria sterowania 2013/2014Sterowanie – obserwatory zredukowane II  Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Obserwatory.
Teoria sterowania SN 2014/2015Sterowalność, obserwowalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność -
Sterowanie ze sprzężeniem od stanu – metoda alokacji biegunów
Systemy dynamiczne 2014/2015Sterowalność - osiągalność  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność i obserwowalność.
Przykład 5: obiekt – silnik obcowzbudny prądu stałego
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Systemy liniowe stacjonarne – modele różniczkowe i różnicowe
Podstawy automatyki I Wykład 3b /2016
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Podstawy automatyki I Wykład /2016
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Zapis prezentacji:

Sterowanie – metody alokacji biegunów Stosowane dalej oznaczenia System MIMO Przy czym: wymiar wymiar wymiar wymiar wymiar wymiar wymiar oraz rząd ; rząd Przy ekstrapolacji zerowego rzędu i czasie zatrzaśnięcia Ts jeżeli istnieje

: macierz systemu, stała, rzeczywista, wymiaru , Sformułowanie problemu Będziemy rozważali zasadniczo przypadki, kiedy gdzie: : macierz systemu, stała, rzeczywista, wymiaru , tzn. : wektor stanu, rzeczywisty, wymiaru , tzn. : wektor wejścia, rzeczywisty, wymiaru , tzn. : macierz wejścia, stała, rzeczywista, wymiaru , tzn. : wektor wyjścia lub obserwacji, rzeczywisty, wymiaru , tzn. : macierz wyjścia lub obserwacji, stała, rzeczywista, wymiaru , tzn.

Zadanie sterowania: System będący w chwili początkowej ( dla systemów stacjonarnych) w stanie początkowym , należy przeprowadzić do pożądanego stanu końcowego, lub operacyjnego , zapewniając w stanie przejściowym spełnienie określonych wymagań dynamicznych takich jak np. czas narastania, przeregulowania, oscylacyjność … . Po osiągnięciu stanu operacyjnego , wartość wyjścia musi być zwykle równa narzuconej wartości zadanej Propozycja rozwiązania: Na system działają dwie wielkości zewnętrzne - stan początkowy - sygnał wartości zadanej Przesłanie zwrotne wektora stanu na wejście z wykorzystaniem macierzy sprzężenia zwrotnego od stan - działanie regulacyjne Przesłanie w przód wektora wartości zadanej na wejście z wykorzystaniem macierzy sprzężenia w przód - działanie śledzące

Macierz kompensacji wzmocnień statycznych (macierz sprzężenia w przód) Rozwiązanie Przypadek ciągły: Obiekt Sterownik (prawo sterowania) Macierz kompensacji wzmocnień statycznych (macierz sprzężenia w przód)

Równania opisujące system zamknięty: Stąd: Równanie stanu systemu zamkniętego i macierz systemu zamkniętego CL – close loop oraz macierz wejścia Przypomnienie: na system działają dwie wielkości zewnętrzne - stan początkowy - sygnał wartości zadanej

Rozważamy systemy liniowe – zasada superpozycji upoważnia do rozdzielnego rozważania Przypadek ciągły – działanie regulacyjne Działanie regulacyjne ma na celu przeprowadzenie wektora stanu systemu ze stanu początkowego do stanu operacyjnego (końcowego) przy zadanych warunkach tego przejścia i/lub osłabieniu wpływu zakłóceń tak, aby osiągnąć stan ustalony Będzie to wynikać z odpowiedniego doboru macierzy Dla obliczenia macierzy przyjmujemy (zgodnie z zasadą superpozycji) Równanie Redukuje się do postaci Wymaganie minimalne – stabilność: wszystkie wartości własne macierzy w lewej półpłaszczyźnie - zapewnienie odwracalności i osiągnięcie stanu równowagi

Macierz jest stałą macierzą o wymiarze i nazywana jest macierzą wzmocnień sterownika Cechy: - w skrajnym przypadku ma elementów, - jako macierz stała związana ze stanem pełni rolę sterownika proporcjonalnego - poprzez związek pełni też rolę sterownika różniczkującego - nie daje sprzężenia o charakterze całkującym

Przypadek ciągły – działanie śledzące Działanie śledzące ma na celu uzyskanie w stanie ustalonym ( ) spełnienie warunku Równanie stanu systemu zamkniętego sprowadza się do stąd Równanie wyjścia systemu zamkniętego przyjmuje postać stąd - warunek jednostkowego wzmocnienia

Przypadek p = q (wymiar p wektora sterowań u = wymiar q wektora wyjścia y) Macierz kwadratowa i jeżeli odwracalna Uwaga 1: macierz wzmocnień jest równa odwrotności wzmocnienia statycznego systemu zamkniętego (liczonego od uM do y) Równania opisujące ten system zamknięty: Stąd: Równanie stanu tego systemu zamkniętego i macierz tego systemu zamkniętego oraz macierz wejścia

Macierz transmitancji systemu opisywanego równaniem stanu określona jest U nas , , stąd Wzmocnienie statyczne

Uwaga 2: Macierz kompensacji wzmocnienia statycznego jest idealna tylko, jeżeli parametry systemu, których zależy, są dokładnie znane i nie zmieniają się w czasie. Kompensacja niespełnienia tych dwóch wymagań – dodanie członu całkującego w pętli sterowania (później !!!) Przypadek p  q (wymiar p wektora sterowań u  wymiar q wektora wyjścia y) Najczęściej: p < q Macierz nie może być określona poprzez obliczenie macierzy odwrotnej Wymaganie jednostkowości wzmocnienia określonego zależnością można zastosować jedynie do dostępnych sterowań i odpowiadających wyjść i wartości zadanych Gdy: p > q Można przeciwnie odrzucić stosowanie wymagania jednostkowości dla p – q dostępnych sterowań

Macierz kompensacji wzmocnień statycznych (macierz sprzężenia w przód) Rozwiązanie Przypadek dyskretny: Obiekt Sterownik (prawo sterowania) Macierz kompensacji wzmocnień statycznych (macierz sprzężenia w przód) Opóźnienie

Równania opisujące system zamknięty: Stąd: Równanie stanu systemu zamkniętego i macierz systemu zamkniętego CL – close loop oraz macierz wejścia

Przypadek dyskretny – działanie regulacyjne Podobnie jak w przypadku ciągłym, przyjmujemy Problem sterowania sprowadza się do określenia sekwencji wartości otrzymywanych dla z zależności , która przeprowadzi system ze stanu początkowego w stan końcowy

Przypadek dyskretny – działanie śledzące Działanie śledzące ma na celu uzyskanie w stanie ustalonym ( ) spełnienia warunku Równanie stanu systemu zamkniętego sprowadza się do stąd Równanie wyjścia systemu zamkniętego przyjmuje postać stąd - warunek jednostkowego wzmocnienia

jeżeli p = q: Podobnie: macierz wzmocnień jest równa odwrotności wzmocnienia statycznego systemu zamkniętego (liczonego od uM do y) Wzmocnienie statyczne

Przykład 1 – mały silnik p. s Przykład 1 – mały silnik p.s. z obciążeniem inercyjnym i pomijalną indukcyjnością obwodu twornika i sztywnym wałem (patrz budowa modelu – wykład z MiI) k = , L = 0 Zmienne modelu: - zmienne stanu - zmienna wyjścia

Równania stanu w postaci macierzowej: Równania wyjścia w postaci macierzowej: Schemat blokowy analogowy modelu silnika PS

Silnik używany do sterowania położeniem kątowym lub liniowym Przykład – pozycjonowanie głowicy plotera Model w postaci nie-macierzowej Transformacja Laplace’a

Transmitancja operatorowa

gdzie, - wzmocnienie w torze napięcie – położenie, - stała czasowa silnika W wielu przypadkach

Pożądany obszar alokacji biegunów systemu zamkniętego Wówczas i Równania stanu dla tych warunków Chcemy umieścić wartości własne systemu zamkniętego w określonych miejscach Pożądany obszar alokacji biegunów systemu zamkniętego Linie stałej wartości współczynnika tłumienia i pulsacji drgań nietłumionych systemu rzędu drugiego

Wybierzmy Postulowany wielomian charakterystyczny systemu zamkniętego Jest to też wielomian charakterystyczny macierzy systemu zamkniętego Równania opisujące system zamknięty: Stąd Równanie stanu systemu zamkniętego i macierz systemu zamkniętego

Wielomian charakterystyczny macierzy systemu zamkniętego wyrażony przez parametry systemu W przykładzie Stąd

Z porównania dwóch wielomianów charakterystycznych i stąd Wybierając możemy określić Z klasycznej teorii:  odwrotność stałej czasowej – pulsacja załamania

 Dla systemu drugiego rzędu oraz Gdyby np. pulsacja drgań nietłumionych miałaby być pięciokrotnie większa od pulsacji załamania, a współczynnik tłumienia stąd i wzmocnienia

Schemat zbudowanego systemu sterowania Silnik

Przykład 2 – system mechaniczny rzędu drugiego Model - masa - współczynnik sprężystości - współczynnik tłumienia - siła zewnętrzna Zmienne stanu Równania stanu

Jeżeli przyjąć jako wejście przyśpieszenie ruchu Jeżeli przyjąć jako wejście przyśpieszenie ruchu – macierz systemu i macierz wejścia Wyprowadzając jak w Przykładzie 1 transmitancję - pulsacja drgań nietłumionych i współczynnik tłumienia wyniosą

Postępując dalej podobnie jak w przykładzie 1 - wielomian charakterystyczny z drugiej strony gdzie Z porównania dwóch wielomianów charakterystycznych

Jeżeli chcemy, aby system zamknięty był „wolniejszy” od systemu oryginalnego Wartość będzie ujemna Obliczenia numeryczne dla danych Macierz systemu i macierz wejścia Wartości własne, pulsacja drgań nietłumionych i współczynnik tłumienia

System bardzo słabo tłumiony – celem sterowania może być zwiększenie tłumienia Jeżeli przyjąć wówczas

Schemat zbudowanego systemu sterowania

Wyniki symulacji Bez sprzężenia Ze sprzężeniem

Dziękuję za uczestnictwo w wykładzie i uwagę