Geometria obrazu Wykład 12

Slides:



Advertisements
Podobne prezentacje
Geometria obrazu Wykład 14
Advertisements

Geometria obrazu Wykład 13
Równowaga chemiczna - odwracalność reakcji chemicznych
Plan Czym się zajmiemy: 1.Bilans przepływów międzygałęziowych 2.Model Leontiefa.
© Matematyczne modelowanie procesów biotechnologicznych - laboratorium, Studium Magisterskie Wydział Chemiczny Politechniki Wrocławskiej, Kierunek Biotechnologia,
Niepewności pomiarowe. Pomiary fizyczne. Pomiar fizyczny polega na porównywaniu wielkości mierzonej z przyjętym wzorcem, czyli jednostką. Rodzaje pomiarów.
Cel analizy statystycznej. „Człowiek –najlepsza inwestycja”
Podstawowe pojęcia termodynamiki chemicznej -Układ i otoczenie, składniki otoczenia -Podział układów, fazy układu, parametry stanu układu, funkcja stanu,
Kwantowy opis atomu wodoru Łukasz Palej Wydział Górnictwa i Geoinżynierii Kierunek Górnictwo i Geologia Kraków, r
WSPÓŁRZĘDNE GEOGRAFICZNE.  Aby określić położenie punktu na globusie stworzono siatkę geograficzną, która składa się z południków i równoleżników. Południk.
Funkcja liniowa Przygotował: Kajetan Leszczyński Niepubliczne Gimnazjum Przy Młodzieżowym Ośrodku Wychowawczym Księży Orionistów W Warszawie Ul. Barska.
© Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH Prezentacja – 4 Matematyczne opracowywanie.
W KRAINIE TRAPEZÓW. W "Szkole Myślenia" stawiamy na umiejętność rozumowania, zadawania pytań badawczych, rozwiązywania problemów oraz wykorzystania wiedzy.
Standardy de facto zapisu georeferencji map o postaci rastrowej definicja georeferencji standard „World File” standard GeoTIFF.
KOSZTY W UJĘCIU ZARZĄDCZYM. POJĘCIE KOSZTU Koszt stanowi wyrażone w pieniądzu celowe zużycie majątku trwałego i obrotowego, usług obcych, nakładów pracy.
Metody Analizy Danych Doświadczalnych Wykład 9 ”Estymacja parametryczna”
Analiza spektralna. Laser i jego zastosowanie.
To znaczy, że składa się z dwóch identycznych części, które można na siebie nałożyć. Na przykład człowiek (w niektórych miejscach) jest takim stworem.
Matematyka przed egzaminem czyli samouczek dla gimnazjalisty Przygotowała Beata Czerniak FUNKCJE.
Pole magnetyczne Magnes trwały – ma dwa bieguny - biegun północny N i biegun południowy S.                                                                                                                                                                     
Optymalna wielkość produkcji przedsiębiorstwa działającego w doskonałej konkurencji (analiza krótkookresowa) Przypomnijmy założenia modelu doskonałej.
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Perceptrony proste nieliniowe i wielowarstwowe © Kazimierz Duzinkiewicz, dr hab.
Transformacja Lorentza i jej konsekwencje
Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Soczewki, konstrukcja obrazów w soczewkach. Autorzy:
Dorota Kwaśniewska OBRAZY OTRZYMYWA NE W SOCZEWKAC H.
Budżetowanie kapitałowe cz. III. NIEPEWNOŚĆ senesu lago NIEPEWNOŚĆ NIEMIERZALNA senesu strice RYZYKO (niepewność mierzalna)
Wytrzymałość materiałów
Wykład IV Zakłócenia i szumy.
Systemy wizyjne - kalibracja
Okrąg i koło Rafał Świdziński.
Geometria obrazu Wykład 13
W kręgu matematycznych pojęć
Przesuwanie wykresu funkcji liniowej
Optyka geometryczna.
MECHANIKA 2 Dynamika układu punktów materialnych Wykład Nr 9
WYPROWADZENIE WZORU. PRZYKŁADY.
RUCH KULISTY I RUCH OGÓLNY BRYŁY
Prowadzący: dr Krzysztof Polko
Liczby pierwsze.
FIGURY.
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ
Podstawy automatyki I Wykład /2016
Elementy analizy matematycznej
KLASYFIKACJA CZWOROKĄTÓW
Materiały pochodzą z Platformy Edukacyjnej Portalu
Zajęcia przygotowujące do matury rozszerzonej z matematyki
Elementy fizyki kwantowej i budowy materii
Podstawy teorii zachowania konsumentów
Optyka W.Ogłoza.
Symulacje komputerowe
PODSTAWY MECHANIKI PŁYNÓW
PRZYKŁADY Metody obrazowania obiektów
Tensor naprężeń Cauchyego
Grafika i komunikacja człowieka z komputerem
Grafika komputerowa Rzutowanie.
MATEMATYKAAKYTAMETAM
Wyrównanie sieci swobodnych
Wytrzymałość materiałów
Prawa ruchu ośrodków ciągłych c. d.
Mikroekonomia Wykład 4.
Elipsy błędów.
Grazyna Mirkowska Matematyka Dyskretna PJWSTK 2001
Zapis prezentacji:

Geometria obrazu Wykład 12 Zdjęcia Przestrzeń rzutowa. Rzutowanie perspektywiczne. Macierz projekcji. Geometria wielobiegunowa (epipolarna).

Definicja. Pierścień przemienny z jedynką (K,+,,1,0), w którym każdy element różny od zera jest odwracalny nazywamy ciałem. Niech K będzie ciałem a R relacją taką, że dwa punkty a, b  Kn- (0, ... ,0) są w relacji aRb gdy istnieje   K takie, że (a1, ... ,an) = (b1, ... ,bn). Iloraz Kn- (0, ... ,0)/R nazywamy przestrzenią rzutową (projective space). Na przykładzie przestrzeni dwuwymiarowej poznajmy niektóre własności przestrzeni rzutowej.

Jednorodna reprezentacja prostych i punktów. Oznaczmy prostą ax+by+c = 0 jako (a,b,c)T. Zauważmy, że dla każego k  0 (ka)x+(kb)y+kc = 0, czyli (a,b,c)T jest w relacji z k(a,b,c)T. Zatem zbiór klas abstrakcji tej relacji na wektorach z R3-(0,0,0) tworzy przestrzeń rzutową P2. Oznaczmy punkt (x,y) jako (x,y,1)T. Lemat. Punkt p leży na prostej l wtedy i tylko wtedy, gdy pTl = lTp = 0. Przecięciem dwóch prostych l i l’ jest punkt p = l  l’. Przez punkty p i p’ przechodzi prosta l = p  p’.

Wniosek. Proste równoległe l = (a,b,c)T i l’ = (a,b,c’)T przecinają się w punkcie (b,-a,0)T. Przez punkty w nieskończoności (punkty idealne) (p1,p2,0) i (r1,r2,0) przechodzi prosta (0,0,c)T. Zasada dualności. Każdemu twierdzeniu dotyczącemu dwuwymiarowej przestrzeni rzutowej odpowiada twierdzenie dualne, w którym zamieniono role prostych i punktów.

„Znikający punkt” (vanishing point). Każdy zbiór współpłaszczyznowych prostych równoległych przecina się w innym („znikającym”) punkcie. Zbiory współpłaszczyznowych prostych równoległych przecinają się punktach współliniowych (nazywamy je horyzontem dla danej płaszczyzny). Horyzont jest linią przecięcia ekranu z płaszczyzną równoległą do danej, przechodzącą przez punkt położenia obserwatora. Różne płaszczyzny wyznaczają różne horyzonty.

Rysowanie obiektów z perspektywą. Przykład. Rysowanie obiektów z perspektywą. [„Projective geometry in computer vision”]

Rzutowanie perspektywiczne (perspective projection). Rozpatrzmy kamerę typu pinhole. Niech ekran będzie położony prostopadle do osi z w odległości f od środka układu współrzędnych. Wtedy (x,y,f) = (X,Y,Z), gdzie  = Z/f . Z dokładnością do współczynnika skalującego można to zapisać z pomocą współrzędnych jednorodnych. [R.Hartley, A.Zisserman, „Multiple View Geometry”]

Założenie o wykorzystaniu kamery typu pinhole jest mało realistyczne, gdyż przy zbyt dużym otworze do ekranu dociera zbyt dużo promieni powodując rozmycie obrazu. Natomiast przy zbyt małym otworze jakość obrazu pogarsza zjawisko dyfrakcji. Poza tym obraz jest ciemny z uwagi na mała liczbę promieni docierających do ekranu. [„Projective geometry in computer vision”]

Kalibracja kamery (camera calibration). Zazwyczaj przyjmuje się, że obraz, jaki chcemy otrzymać jest równoważny temu, który pojawia się na ekranie podczas rzutowania. Jednak w przypadku, gdy np. ogniskowa nie jest znormalizowana lub występują odchylenia w trakcie rzutowania (robienia zdjęcia), należy uwzględnić to w postaci macierzy kalibracji. [M.Pollefeys, „Visual 3D Modelling from Images”]

px i py oznaczają wysokość i szerokość piksela na obrazie, c = (cx, cy, 1)T odpowiada położeniu osi rzutu na ekranie, f jest ogniskową,  odchyleniem obrazu od pionu, xR i yR współrzędnymi rzutu na ekranie, a x i y współrzędnymi obrazu. Poprzednie równanie możemy zapisać w następującej postaci (gdzie zazwyczaj s, cx, cy są zerami) [M.Pollefeys, „Visual 3D Modelling from Images”]

Bardziej szczegółowo. Celem kalibracji jest wyznaczenie parametrów określających zależności między układem związanym ze sceną (podstawowym) a układem związanym z kamerą, na które mają wpływ transformacja perspektywy oraz parametry związane z kamerą i układem optycznym. Parametry kamery mające wpływ na proces kalibracji: zewnętrzne (extrinsic) – związane z przesunięciem i rotacją układu kamery względem układu związanego z obserwowaną sceną, wewnętrzne (intrinsic) – określające właściwości techniczne (optyczne, elektryczne itp.) kamery, w tym różne rodzaje zniekształceń obrazu.

Zniekształcenia obrazu (picture deformations): radialne – powodują przesunięcie współrzędnych na obrazie w sposób promienisty i można je aproksymować stosując równanie gdzie k1, k2, … są pewnymi współczynnikami zniekształceń radialnych, a r oznacza odległość punktu (x0,y0) od środka układu współrzędnych, styczne - prostopadłe do radialnych są skutkiem tego, że środki krzywizn soczewek obiektywu nie zawsze są idealnie współliniowe oraz można je redukować z pomocą równania gdzie p1 i p2 są pewnymi współczynnikami zniekształceń stycznych, liniowe – powstają, gdy osie układu związanego z kamerą nie są idealnie prostopadłe do siebie i można je opisać z pomocą pojedynczego współczynnika krzywizny c.

Przykład. [http://etacar.put.poznan.pl/marcin.kielczewski/POiSW9.pdf]

Po uwzględnieniu wszystkich zniekształceń otrzymujemy następujące parametry wewnętrzne modelu kamery: wektor długości ogniskowej fc, wektor cc określający współrzędne położenia środka układu współrzędnych, współczynnik krzywizny c zniekształceń liniowych, wektor przekształceń kc=[k1, k2, k3, p1, p2]T zawierający współczynniki zniekształceń radialnych i stycznych.

Dystorsja (distortion) Dystorsja (distortion). Wada optyczna polegająca na różnym powiększeniu obrazu w zależności od jego odległości od osi optycznej instrumentu (zmieniająca się ogniskowa obiektywu lub okularu w zależności od odległości od osi optycznej), co powoduje powstawanie wyraźnych zniekształceń obrazu na brzegu pola widzenia. Rozróżniamy dystorsję beczkową (barrel distortion) i poduszkową (pincushion distortion). Układy ze skorygowaną dystorsją nazywamy układami ortoskopowymi (orthoscopic arrangements). [www.optyczne.pl]

Przykład. http://www. mathworks

Każda metoda kalibracji wymaga znajomości serii punktów w przestrzeni oraz współrzędnych ich rzutów na płaszczyznę obrazu. Ze względu na sposób określania punktów można wyróżnić trzy podstawowe metody: stosującą trójwymiarowy obiekt referencyjny (3D reference model), którego kształt i wymiary są znane z dużą precyzją, lub płaski wzorzec ze znaną zmianą położenia podczas wyznaczania punktów do kalibracji, używającą wzorzec płaski (flat pattern) umieszczony w różnych położeniach względem kamery (nie jest konieczna znajomość pozycji wzorca a jedynie rozmieszczenie punktów na wzorcu), samokalibrację (self-calibration), w której nie używa się żadnego obiektu, a wykonuje się ją na podstawie odpowiadających sobie punktów z obrazów rejestrowanych podczas ruchu kamery obserwującej statyczną scenę.

Przykład. Wzorzec kalibrujący kamerę. [cyberfoto.pl]

Ruch kamery (camera motion). Zmianę położenia kamery kontrolujemy z pomocą następującej macierzy (gdzie R oznacza macierz obrotu, a t = [tx, ty, tz]T jest wektorem przesunięcia) (ruch sceny opisany jest macierzą ).

Macierz projekcji. Uwzględniając wcześniejsze spostrzeżenia otrzymujemy macierz projekcji kamery o następującej postaci [M.Pollefeys, „Visual 3D Modelling from Images”]

Geometria epipolarna (epipolar geometry) Geometria epipolarna (epipolar geometry). Gdy scena jest obserwowana z więcej niż jednego punktu można zauważyć wiele zależności między obrazami tych samych punktów. Umożliwia to odtworzenie sceny na podstawie jej rzutów. Zakładamy, że znana jest pozycja obserwatorów i płaszczyzn rzutowania.

Nawet gdy nie jest znane dokładne położenie punktu M odpowiadającego na obrazie punktowi m, musi on należeć do prostej l wyznaczanej przez m i pozycję obserwatora C. Zatem obraz punktu M względem drugiego obserwatora C’ należy do prostej l’ będącej rzutem l. [M.Pollefeys, „Visual 3D Modelling from Images”]

Przykład. [R.Hartley, A.Zisserman, „Multiple View Geometry”]

Prosta łącząca pozycje obserwatorów C i C’ definiuje pęk zawierających ją płaszczyzn. Każda prosta należąca do którejś z tych płaszczyzn występuje w obu obrazach. Nazywa się to epipolarną odpowiedniością. Rzut każdej takiej prostej zawiera punkty e lub e’ będące przecięciem prostej łączącej C i C’ z odpowiednimi płaszczyznami rzutowymi. Punkty e i e’ nazywamy epipolami. [M.Pollefeys, „Visual 3D Modelling from Images”]

Z pomocą geometrii epipolarnej możemy starać się odtworzyć kształt sceny na podstawie posiadanych obrazów. Ale osiągnięcie zadowalającego efektu wymaga sporego wysiłku. [M.Pollefeys, „Visual 3D Modelling from Images”]

Dziękuję za uwagę.