Liczbami naturalnymi nazywamy liczby 0,1,2,3,..., 127,... Liczby naturalne poznaliśmy już wcześniej; służą one do liczenia przedmiotów. Zbiór liczb.

Slides:



Advertisements
Podobne prezentacje
Opracowała: Iwona Bieniek
Advertisements

Tablice 1. Deklaracja tablicy
DZIAŁANIA NA POTĘGACH.
Wzory Cramera a Macierze
MATEMATYKA-ułamki zwykłe
WEKTORY Każdy wektor ma trzy zasadnicze cechy: wartość (moduł), kierunek i zwrot. Wartością wektora nazywamy długość odcinka AB przedstawiającego ten wektor.
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
QUIZ MATEMATYCZNY.
Liczby wokół nas A. Cedzidło.
Pisemne mnożenie liczb naturalnych
Pisemne dodawanie i odejmowanie liczb naturalnych
Pisemne dzielenie liczb naturalnych
Macierze Maria Guzik.
SYSTEMY LICZBOWE.
Liczby całkowite.
LICZBY RZECZYWISTE PODZBIORY ZBIORU LICZB RZECZYWISTYCH
Zapis informacji Dr Anna Kwiatkowska.
Stworzyli: Edyta Celmer I Marta Kałuża.
Działania na ułamkach zwykłych
Matematyka wokół nas Równania i nierówności
Ułamki zwykłe i liczby mieszane.
Reprezentacje - zmiennoprzecinkowa
Matematyka.
„Są plusy dodatnie i plusy ujemne.”
wyrażenia algebraiczne
Matematyka Architektura i Urbanistyka Semestr 1
Wyrażenia algebraiczne
Wyrażenia algebraiczne
WITAMY W ŚWIECIE MATEMATYKI
Dane INFORMACYJNE Nazwa szkoły:
Działania arytmetyczne.
Systemy Liczenia - I Przez system liczbowy rozumiemy sposób zapisywania i nazywania liczb. Rozróżniamy: pozycyjne systemy liczbowe i addytywne systemy.
Liczby rzeczywiste ©M.
„Równania są dla mnie ważniejsze, gdyż polityka jest czymś istotnym tylko dzisiaj, a równania są wieczne.” Albert Einstein.
Matematyka i system dwójkowy
FUNKCJE Opracował: Karol Kara.
LICZBY Naturalne.
Liczby naturalne Ułamki zwykłe Ułamki dziesiętne Liczby całkowite Liczby ujemne Procenty Wyrażenia algebraiczne Równania i nierówności Układ współrzędnych.
Liczby Naturalne.
Liczby Ujemne.
Potęgowanie i pierwiastkowanie
WYKŁAD 3 Temat: Arytmetyka binarna 1. Arytmetyka binarna 1.1. Nadmiar
Temat: Liczby całkowite
Wyrażenia Algebraiczne
TEMAT: UŁAMKI ZWYKŁE.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
POTĘGI ©M.
POZNAJ ŚWIAT LICZB CAŁKOWITYCH
Działania w zbiorze liczb całkowitych
Zasady arytmetyki dwójkowej
Rodzaje Liczb JESZCZE SA TAKIE
Rodzaje liczb.
Działania podstawowe w zbiorze liczb naturalnych
LICZBY NATURALNE I CAŁKOWITE Gimnazjum w Blachowni Hej, mam na imię Zbigniew! Jestem nauczycielem matematyki. Dziś wprowadzę was w cudowny świat liczb.
Liczby 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, …(i tak dalej) nazywamy liczbami naturalnymi. Tak jak z liter tworzy się słowa, tak z cyfr tworzymy liczby. Dowolną.
Liczby naturalne i całkowite Wykonanie: Aleksandra Jurkowska Natalia Piłacik Paulina Połeć Klasa III a Gimnazjum nr 1 w Józefowie Ul. Leśna 39 O5 – 420.
LICZBY NATURALNE I CAŁKOWITE. Liczby Naturalne Liczby naturalne – liczby używane powszechnie do liczenia (na obiedzie były trzy osoby) i ustalania kolejności.
Wyrażenia algebraiczne
POTĘGOWANIE.
Liczby całkowite Definicja Działania na liczbach całkowitych Cechy podzielności Potęga.
Liczby naturalne i całkowite Spis treści Definicje Działania na liczbach Wielokrotności liczb naturalnych Cechy podzielności Przykłady potęg,potęgi o.
Wyrażenie algebraiczne – wyrażenie w którym obok liczb i znaków działań występują litery Wyrażenia algebraiczne mogą być: - proste – jedna liczba, litera.
Zastosowania programu MS Excel 2013 w matematyce Kacper Lewandowski (II B) Tobiasz Katana (I B) opiekun – mgr Katarzyna Duch __________________________________________________________________________________________________________________________________
Działania na liczbach wymiernych Opracowała: Monika Grudzińska-Czerniecka.
Nierówności liniowe.
Rozwiązywanie równań pierwszego stopnia z jedną niewiadomą.
POTĘGI I PIERWIASTKI .
Działania na potęgach Wiktoria Kieniewicz kl.2e. Co to są potęgi? Potęgowanie to działanie zastępujące mnożenie. Potęgowany element nazywa się podstawą,
WYRAŻENIA ALGEBRAICZNE
Zapis prezentacji:

Liczbami naturalnymi nazywamy liczby 0,1,2,3,..., 127,... Liczby naturalne poznaliśmy już wcześniej; służą one do liczenia przedmiotów. Zbiór liczb naturalnych oznaczamy przez N, tzn. yv= {o, 1,2,3,...}. W zbiorze N istnieje liczba najmniejsza. Jest to liczba 0. Jeżeli do tej liczby najmniejszej dodamy 1, to otrzymamy następną liczbę 1. Jeśli do tej liczby dodamy 1, to otrzymamy następną liczbę 2. Możemy dodać liczbę 1 do dowolnej liczby n e Ni otrzymamy następną liczbę n + 1. Ten sposób postępowania pozwala na utworzenie całego zbioru liczb naturalnych. Zauważmy jednak, że nie ma w zbiorze /V liczby najwięk­szej, bo jeśli n e N, to również n + 1 e N. Na liczbach tych można wykonywać pewne działania. N= {0, 1, 2, 3, 4,...,n – 1, n, n+1,...}

Liczbami całkowitymi nazywamy liczby naturalne oraz liczby do nich przeciwne. Zbiór liczb całkowitych oznaczamy przez C, a więc: C= {... -3, -2, -1, 0, 1, 2, 3,...}. Gdy zaznaczymy liczby naturalne na osi liczbowej, to punkty od­powiadające tym liczbom leżą na prawo od punktu 0, odpowiadającego liczbie 0 w równych odległościach. Punkty leżące na lewo od punktu 0 odpowiadają liczbom ujemnym. Pary liczb —1 i 1, 2 i —2, —5 i 5, 6 i —6 są przykładami par liczb przeciwnych. Liczbą przeciwną do danej liczby a jest liczba —a. Na przykład liczbą przeciwną do 10 jest liczba —10, a liczbą przeciwną do —5 jest -(-5) = 5. Z= {..., -n – 1, -n, -n+1,..., -3, -2, -1, 0, 1, 2, 3,...,n – 1,n,n+1,...}

–Dodawanie jest najbardziej podstawowym działaniem matematycznym obecnym niemal we wszystkich dziedzinach matematyki. Obiekty dodawane to składniki, wynik nazywa się sumą. Oznaczane jest zwyczajowo plusem (+). Zwykle określenie to jest używane do określenia dodawania liczb, wielomianów czy figur. Gdy rozważa się struktury algebraiczne to jest ono dowolnym, abstrakcyjnym działaniem spełniającym tylko pewne założenia, takie jak łączność czy istnienie elementu neutralnego. –Odejmowanie to pewna operacja na dwóch obiektach, która zwraca ich różnicę. Obiektami tymi mogą być liczby, ale też wektory, macierze i inne twory matematyczne. Odejmowanie oznacza się znakiem -. –Potęgą liczby a o wykładniku naturalnym n > 1 nazywamy iloczyn n czynników, z których każdy jest równy a –Dzielenie to w matematyce operacja zdefiniowana w dowolnym ciele jako:, dla gdzie to element odwrotny do b. W działaniu tym występują dwa operandy nazywające się dzielną i dzielnikiem. Wynik dzielenia nazywany jest ilorazem. Do zapisu operacji dzielenia używa się alternatywnie symboli '÷', '/'. –Mnożenie jedno z działań w którym mnożymy przez siebie dwie liczby. Oznacza się na ogół symbolem "·" (kropka): 2 · 2 = 4, czasami w miejsce kropki używa się znaku "×": 3×4 = 12, a w zapisach związanych z informatyką przyjęło się używanie symbolu "*" (gwiazdka): a:=b*c.

Ponieważ poznaliśmy już podstawowe działania możemy przypomnieć sobie ich kolejność. Otóż kolejność wykonywania działań jest następująca: 1.potęgowanie lub pierwiastkowanie 2.mnożenie lub dzielenie (w zależności od kolejności) 3.dodawanie lub odejmowanie (kolejność także ważna) Jeżeli w działaniu występuje tylko dodawanie i odejmowanie, działania wykonujemy od strony lewej do prawej =13+87=100 Jeżeli w działaniu występuje dodawanie, odejmowanie, mnożenie i dzielenie, najpierw wykonujemy mnożenie, potem dzielenie, potem dodawanie i odejmowanie :4= =35+16=51

Liczba całkowita a jest podzielna przez liczbę (b nazywamy dzielnikiem liczby a) wtedy i tylko wtedy, gdy istnieje taka liczba, że. Dowolna liczba całkowita jest podzielna : - przez 2 cyfra jej jedności jest równa 0, 2, 4, 6 lub 8, - przez 3 suma jej cyfr jest podzielna przez 3, - przez 4 liczba utworzona z dwóch ostatnich cyfr danej liczby jest podzielna przez 4, - przez 5 cyfra jedności jest równa 0 lub 5, - przez 6 jest podzielna przez 2 i 3, - przez 8 liczba utworzona z trzech ostatnich cyfr danej liczby jest podzielna przez 8, - przez 9 suma jej cyfr jest podzielna przez 9,

–Podczas mnożenia (dzielenia) potęg o tym samym wykładniku podstawy mnożymy (dzielimy), a wykładnik pozostaje ten sam: –Podczas mnożenia (dzielenia) potęg o tej samej podstawie, podstawa pozostaje bez zmian, a wykładniki dodajemy (odejmujemy). Wykres funkcji potęgowej

–Liczby naturalne i całkowite odgrywają ważną rolę w życiu człowieka. Dzięki liczbom są zapisywane np.. nr na pieniądzach albo w komputerach możemy zapisywać różne kwoty jakie wydaliśmy. W matematyce liczby są jedną z ważniejszych części do opanowania. Kto nie zna liczb nie będzie nic umiał. Dlatego liczby odgrywają bardzo ważną rolę w życiu człowieka.

Autorem tej prezentacji pod tytułem „Liczby naturalne i całkowite” jest Linkiewicz Przemysław. Uczeń III klasy Publicznego Gimnazjum nr.1 im. Krzysztofa Kamila Baczyńskiego w Wisznicach.