Ekonometria WYKŁAD 7 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.

Slides:



Advertisements
Podobne prezentacje
Proces doboru próby. Badana populacja – (zbiorowość generalna, populacja generalna) ogół rzeczywistych jednostek, o których chcemy uzyskać informacje.
Advertisements

Blok I: PODSTAWY TECHNIKI Lekcja 7: Charakterystyka pojęć: energia, praca, moc, sprawność, wydajność maszyn (1 godz.) 1. Energia mechaniczna 2. Praca 3.
Równowaga chemiczna - odwracalność reakcji chemicznych
Ekonometria WYKŁAD 10 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Plan Czym się zajmiemy: 1.Bilans przepływów międzygałęziowych 2.Model Leontiefa.
Ekonometria stosowana WYKŁAD 4 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Stężenia Określają wzajemne ilości substancji wymieszanych ze sobą. Gdy substancje tworzą jednolite fazy to nazywa się je roztworami (np. roztwór cukru.
OPERATORZY LOGISTYCZNI 3 PL I 4PL NA TLE RYNKU TSL Prof. zw.dr hab. Włodzimierz Rydzkowski Uniwersytet Gdańsk, Katedra Polityki Transportowej.
Rozliczanie kosztów działalności pomocniczej
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Metody optymalizacji - Energetyka 2015/2016 Metody programowania liniowego.
© Matematyczne modelowanie procesów biotechnologicznych - laboratorium, Studium Magisterskie Wydział Chemiczny Politechniki Wrocławskiej, Kierunek Biotechnologia,
Ekonometria stosowana Slajdy pomocnicze Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Ekonometria stosowana Autokorelacja Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Niepewności pomiarowe. Pomiary fizyczne. Pomiar fizyczny polega na porównywaniu wielkości mierzonej z przyjętym wzorcem, czyli jednostką. Rodzaje pomiarów.
Ćwiczenia Zarządzanie Ryzykiem Renata Karkowska, ćwiczenia „Zarządzanie ryzykiem” 1.
Ekonometria Wykład 1 Uwarunkowania modelowania ekonometrycznego. Uogólniona metoda najmniejszych kwadratów dr hab. Mieczysław Kowerski.
Cel analizy statystycznej. „Człowiek –najlepsza inwestycja”
Ryzyko a stopa zwrotu. Standardowe narzędzia inwestowania Analiza fundamentalna – ocena kondycji i perspektyw rozwoju podmiotu emitującego papiery wartościowe.
KAPITALIZACJA 1. Określenie procentu Procent jest to setna część z całości. 1 % = 0,01 z całości Aby zamienić liczbę na procent należy tą liczbę pomnożyć.
Mikroekonomia dr hab. Maciej Jasiński, prof. WSB Wicekanclerz, pokój 134A Semestr zimowy: 15 godzin wykładu Semestr letni: 15.
EWALUACJA PROJEKTU WSPÓŁFINANSOWANEGO ZE ŚRODKÓW UNII EUROPEJSKIE J „Wyrównywanie dysproporcji w dostępie do przedszkoli dzieci z terenów wiejskich, w.
Przykład: 1 Pan Roch wpłacił 500 zł do banku, w którym oprocentowanie wkładów wynosiło 12% w skali roku. Pieniądze te przeznaczył dla swego chrześniaka,
Klasyczny model regresji liniowej (KMRL) Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa.
Bezpieczeństwo i zdrowie w pracy dotyczy każdego. Jest dobre dla ciebie. Dobre dla firmy. Partnerstwo dla prewencji Co badanie ESENER może nam powiedzieć.
Analiza wariancji (ANOVA) Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie.
EWALUACJA JAKO ISTOTNY ELEMENT PROJEKTÓW SYSTEMOWYCH Sonia Rzeczkowska.
Zmienne losowe Zmienne losowe oznacza się dużymi literami alfabetu łacińskiego, na przykład X, Y, Z. Natomiast wartości jakie one przyjmują odpowiednio.
Rachunek dochodu narodowego. Plan wykładu 1.Kategorie mierników skali działalności gospodarczej 2.PKB realny i nominalny 3.Wady PKB 4.Wzrost a rozwój.
Ekonometria WYKŁAD 1 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Kontrakty terminowe na indeks mWIG40 Prezentacja dla inwestorów Giełda Papierów Wartościowych w Warszawie S.A. Dział Notowań GPW kwiecień 2005.
BYĆ PRZEDSIĘBIORCZYM - nauka przez praktykę Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego.
Analiza tendencji centralnej „Człowiek – najlepsza inwestycja”
Równowaga rynkowa w doskonałej konkurencji w krótkim okresie czasu Równowaga rynkowa to jest stan, kiedy przy danej cenie podaż jest równa popytowi. p.
Funkcja liniowa Przygotował: Kajetan Leszczyński Niepubliczne Gimnazjum Przy Młodzieżowym Ośrodku Wychowawczym Księży Orionistów W Warszawie Ul. Barska.
© Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH Prezentacja – 4 Matematyczne opracowywanie.
STATYSTYKA – kurs podstawowy wykład 10 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
W KRAINIE TRAPEZÓW. W "Szkole Myślenia" stawiamy na umiejętność rozumowania, zadawania pytań badawczych, rozwiązywania problemów oraz wykorzystania wiedzy.
Metoda kartogramów. Definicja Metoda służy do przedstawiania średniej intensywności zjawiska w granicach określonych pól odniesienia. Wartości obliczane.
Opodatkowanie spółek Podziały Spółek. Podziały spółek Rodzaje podziałów wg KSH Przewidziane są cztery sposoby podziału: 1) podział przez przejęcie, który.
KOSZTY W UJĘCIU ZARZĄDCZYM. POJĘCIE KOSZTU Koszt stanowi wyrażone w pieniądzu celowe zużycie majątku trwałego i obrotowego, usług obcych, nakładów pracy.
Metody Analizy Danych Doświadczalnych Wykład 9 ”Estymacja parametryczna”
Skuteczności i koszty windykacji polubownej Wyniki badań zrealizowanych w ramach grantu Narodowego Centrum Nauki „Ocena poziomu rzeczywistej.
BADANIA STATYSTYCZNE. WARUNKI BADANIA STATYSTYCZNEGO musi dotyczyć zbiorowościstatystycznej musi określać prawidłowościcharakteryzujące całą zbiorowość.
Teoria masowej obsługi Michał Suchanek Katedra Ekonomiki i Funkcjonowania Przedsiębiorstw Transportowych.
Optymalna wielkość produkcji przedsiębiorstwa działającego w doskonałej konkurencji (analiza krótkookresowa) Przypomnijmy założenia modelu doskonałej.
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Perceptrony proste nieliniowe i wielowarstwowe © Kazimierz Duzinkiewicz, dr hab.
WPŁYW RÓWNOŚCI PŁCI NA JAKOŚĆ ŻYCIA - METODOLOGIA, MODEL ANALITYCZNY I GŁÓWNE WYNIKI Ewa Krzaklewska Piotr Brzyski Uniwersytet Jagielloński.
Zmienna losowa dwuwymiarowa Dwuwymiarowy rozkład empiryczny Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium Analiz Ekonomicznych.
Budżetowanie kapitałowe cz. III. NIEPEWNOŚĆ senesu lago NIEPEWNOŚĆ NIEMIERZALNA senesu strice RYZYKO (niepewność mierzalna)
O PARADOKSIE BRAESSA Zbigniew Świtalski Paweł Skałecki Wydział Matematyki, Informatyki i Ekonometrii Uniwersytet Zielonogórski Zakopane 2016.
Podstawy teorii przedsiębiorstwa
Produkt krajowy brutto jako miara poziomu produkcji krajowej
Test analizy wariancji dla wielu średnich – klasyfikacja pojedyncza
Podstawy teorii przedsiębiorstwa
Katedra Międzynarodowych Studiów Porównawczych
terminologia, skale pomiarowe, przykłady
MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH
Oczekiwana przez inwestora stopa dochodu
Podstawy teorii przedsiębiorstwa
Elementy fizyki kwantowej i budowy materii
Podstawy teorii zachowania konsumentów
Przychody i koszty działalności
Własności statystyczne regresji liniowej
Przepływy międzygałęziowe
Zasady funkcjonowania rynku
MATEMATYKAAKYTAMETAM
REGRESJA WIELORAKA.
Zapis prezentacji:

Ekonometria WYKŁAD 7 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych

Plan Czym się zajmiemy: 1.Modele liniowe i nieliniowe – przykłady 2.Funkcje produkcji 3.Modele zmiennej jakościowej

Modele liniowe ►Modele liniowe względem parametrów i zmiennych np.: ►Jeśli funkcja g (y)=y, to model jest bezpośrednio liniowy względem parametrów, w przeciwnym przypadku model jest linearyzowany np. ►Modele liniowe względem parametrów, lecz nieliniowe względem zmiennych np.: lub w postaci ogólnej: lub po zlinearyzowaniu:

Typowe modele liniowe wzg. parametrów ►Modele bezpośrednio liniowe: ►Modele funkcji kwadratowej (zależność U-kształtna) ►Model ze zmiennymi interakcyjnymi ►Modele linearyzowane: ►Model potęgowy: ►Model wykładniczy: ►Model hiperboliczny:

Interpretacja parametrów regresji w modelach z logarytmami ►Model liniowy : poziom – poziom - wyjaśnione wcześniej ►Model logarytmiczny : poziom – logarytm Interpretacja: wzrost x o 1% prowadzi do wzrostu y o jednostek ►Model wykładniczy : logarytm– poziom Interpretacja: wzrost x o 1 prowadzi do wzrostu y o ►Model potęgowy: logarytm– logarytm Interpretacja: wzrost x o 1% prowadzi do wzrostu y o

Co oznacza przyrost logarytmu? ►Wyrażenie oznacza tempo wzrostu zmiennej x ►Dla zmiennej przekrojowej oznacza natomiast procentowy przyrost zmiennej x ►Dowód: ►Z rozwinięcia Taylora mamy stąd dla mamy:

Elastyczność a logarytmy ►Elastyczność cząstkowa zmiennej y po zmiennej x dana jest wzorem: ►Dowód: oznaczając u=lny, v=lnx, x=e^lnx=e^v otrzymujemy

Interpretacja parametru w wykładniczym modelu trendu parametr stojący przy zmiennej t oznacza stopę wzrostu zmiennej y ►Dowód: ►W modelu postaci co ze wzoru Maclaurina jest równe

Przykład modelu ściśle nieliniowego – funkcja logistyczna ►Funkcja logistyczna to funkcja określona wzorem ►Wykres funkcji logistycznej postaci

Przykład modelu ściśle nieliniowego – funkcja logistyczna ►Własności funkcji logistycznej: ►parametr jest poziomem nasycenia zmiennej y, gdyż zachodzi : ►dla t= 0 funkcja przyjmuje ►punktem przegięcia funkcji jest ►funkcję można sformułować w innej wersji, w której przyjmuje wartość nasycenia równą 1, stąd nadaje się do modelowania prawdopodobieństwa (podstawa tzw. modelu logistycznego)

Funkcja produkcji - własności (1) ►Funkcja produkcji opisuje zależność między nakładami czynnikami produkcji wartością wytworzonego dzięki nim produktu. ►Funkcja produkcji może bazować na danych mikro (nakłady i wyniki poszczególnych przedsiębiorstw), bądź danych makroekonomicznych (województwo, sektor, kraj itp.) ►Ogólna postać ekonometrycznej funkcji produkcji:

Funkcja produkcji - własności (2) ►Estymacja ekonometrycznej funkcji produkcji może bazować na danych przekrojowych (np firm z danego województwa w danym roku), szeregach czasowych (np. produkcja i nakłady danego przedsiębiorstwa w 30 kolejnych kwartałach) lub danych panelowych (np. wielkość produkcji i nakładów w 15 sektorach gospodarki w latach ) ►Funkcja produkcji jest zazwyczaj funkcją nieliniową; niektóre z jej postaci można zlinearyzować (por. dalej funkcję produkcji Cobba- Douglasa) ►Funkcja produkcji zazwyczaj spełnia szereg własności – dla uproszczenia przedstawione są dla funkcji dwuczynnikowej postaci:

Funkcja produkcji - własności (3) ►(1) Funkcja produkcji jest ciągła i dwukrotnie różniczkowalna ►(2) Wartości funkcji oraz jej argumenty są nieujemne (wykres znajduje się w pierwszym oktancie układu (Y, K, L) ►(3) Warstwice funkcji produkcji dla (K,L) tworzą izokwanty produkcji – linie obrazujące kombinację czynników produkcji dających tę samą wielkość produktu; izokwanty są wypukłe w przestrzeni (K, L); dla danej wielkości produktu są opisane wzorem : ►(4) Produkcyjność krańcowa czynnika produkcji jest dodatnia; jest to pierwsza pochodna funkcji produkcji po danym czynniku produkcji; mierzy o ile zmienia się produkt jeśli ceteris paribus nakład czynnika zmienia się o jednostkę

Funkcja produkcji - własności (4) ►(5) Produkcyjność krańcowa czynnika produkcji jest malejącą funkcją nakładów tego czynnika; jest to druga pochodna po danym czynniku produkcji; własność oznacza, że zwiększanie danego czynnika produkcji ceteris paribus prowadzi do coraz mniejszego wzrostu produktu ►(6) Produkcyjność krańcowa czynnika produkcji jest rosnącą funkcją nakładów drugiego czynnika; jest to pochodna mieszana po obu czynnikach produkcji; własność oznacza, że zwiększanie danego czynnika produkcji ceteris paribus prowadzi zwiększenia produkcyjności krańcowej drugiego czynnika produkcji

Funkcja produkcji - własności (5) ►(7) Funkcja produkcji jest jednorodna; stopień jednorodności funkcji jest określony przez r we wzorze: Stopień jednorodności funkcji definiuje tzw. efekty skali: ►jeśli r<1, to funkcja wykazuje malejące korzyści skali tzn. że zwiększenie każdego z czynników produkcji o x% powoduje zwiększenie produktu o mniej niż x%; ►jeśli r=1, to funkcja wykazuje stałe korzyści skali tzn. że zwiększenie każdego z czynników produkcji o x% powoduje zwiększenie produktu o x%; ►jeśli r>1, to funkcja wykazuje rosnące korzyści skali tzn. że zwiększenie każdego z czynników produkcji o x% powoduje zwiększenie produktu o więcej niż x%.

Funkcja produkcji - własności (6) ►(8) Czynniki produkcji są substytucyjne w procesie produkcji. Oznacza to, że ten sam poziom produktu można osiągnąć różnymi kombinacjami nakładów czynników produkcji. ►Stopień zastępowania czynników produkcji określa Krańcowa Stopa Substytucji (KSS); określa ona jaka powinna być wielkość wzrostu (spadku) jednego z czynników produkcji, aby przy spadku (wzroście) drugiego czynnika produkcji o jednostkę produkt pozostawał stały ►KSS jest równa współczynnikowi nachylenia stycznej do izokwanty w punkcie równym wyjściowej kombinacji czynników produkcji. ►KSS wyznaczamy ze wzoru na różniczkę zupełną tzn.: Ponieważ produkt ma być stały to dY=0, a stąd

Funkcja produkcji - własności (7) ►(9) Elastyczność produkcji względem czynnika produkcji mierzona w danym punkcie mówi o ile procent zmieni się Y jeśli dany czynnik produkcji zmieni się o 1 proc. w otoczeniu punktu wyznaczonego przez daną kombinację czynników produkcji: ►(10) Elastyczność substytucji mówi o ile proc. zmienia się relacja czynników produkcji (K/L – techniczne uzbrojenie pracy) w reakcji na 1 proc. zmianę KSS; mierzy stopień wypukłości izokwanty

Funkcja Cobba-Douglasa (1) ►Funkcja bazuje na modelu potęgowym i jest liniowa względem parametrów – po zlinearyzowaniu przyjmuje postać: ►Funkcja postaci lub w formule dwuczynnikowej ►(4) Produkcyjność krańcowa: ►(3) Izokwanta produkcji dla Y0:

Funkcja Cobba-Douglasa – izokwanty dla funkcji o parametrach a=0.8, b=0.66, c=0.33

Funkcja Cobba-Douglasa (2) ►(6) Produkcyjności krańcowe są rosnącą funkcją drugiego czynnika produkcji ►(5) Produkcyjności krańcowe są malejącą funkcją danego nakładu produkcji, jeśli tylko b i c <1

Funkcja Cobba-Douglasa (3) ►(8) Krańcowa stopa substytucji jest funkcją technicznego uzbrojenia pracy ►(7) Funkcja jest jednorodna stopnia r=b+c Efekty skali zależą więc od sumy współczynników b i c: ►jeśli b+c<1, to funkcja wykazuje malejące korzyści skali ►jeśli b+c=1, to funkcja wykazuje stałe korzyści skali ►jeśli b+c>1, to funkcja wykazuje rosnące korzyści skali

Funkcja Cobba-Douglasa (4) ►(9) Elastyczności produkcji względem czynników produkcji ►(10) Elastyczności produkcji względem czynników produkcji. W funkcji Cobba- Douglasa jest ona stała i zawsze wynosi 1

Estymacja funkcji Cobba-Douglasa ►W praktyce funkcję CD estymujemy metodą najmniejszych kwadratów logarytmując wyjściowe wartości poszczególnych zmiennych ►Za pomocą testu liniowych restrykcji możemy przetestować hipotezę o charakterze korzyści skali (stałe, rosnące lub malejące) ►W modelach bazujących na szeregach czasowych często do funkcji produkcji dodaje się parametr opisujący zmiany produktu w czasie niezależne od poziomu czynników produkcji lub dla postaci zlinearyzowanej Wartość parametru d informuje o ile procent zmienia się wartość produktu w każdej jednostce czasu. Jest interpretowana jako miara postępu technologicznego.

Modele zmiennej jakościowej ►Zmienne jakościowe stosowane są do kwantyfikacji cech jakościowych np. płci, przedziału dochodów, jakości produktu itp. ►Bardzo często zmienne te przyjmują postać binarną (zerojedynkową) np. 1- kobieta, 0- mężczyzna ►Modele zmiennej jakościowej to takie, w których zmienną objaśnianą w modelu jest zmienna jakościowa zazwyczaj zero- jedynkowa. ►Zmienne objaśniające mogą być zarówno zmiennymi jakościowymi, jak i ilościowymi ►Postać funkcyjna zależności może być różna, w szczególności może mieć charakter nieliniowy

Liniowy Model Prawdopodobieństwa (1) ►LMP w postaci teoretycznej zapisujemy jako gdzie y(i) jest zmienną zero-jedynkową ►Wartości empiryczne zmiennej objaśnianej są równe 0 lub 1, jednak wartości teoretyczne (wynikające z modelu) nie mają takich ograniczeń ►Jaka jest interpretacja wartości teoretycznych y(i)? Co oznacza wartość 0.3, jeśli zmienna objaśniana przyjmuje wartość 1, gdy dana osoba jest bezrobotna, a 0 gdy pracująca? ►Należy zauważyć, że: natomiast z postaci funkcyjnej modelu wynika, że

►Z powyższego wynika że: Liniowy Model Prawdopodobieństwa (2) co oznacza, że wartość teoretyczna zmiennej objaśnianej może być interpretowana jako prawdopodobieństwo tego, że zmienna y(i) przyjmie wartość 1 ►Interpretacja parametrów strukturalnych LMP odnosi się do zmian prawdopodobieństwa w reakcji na jednostkową zmianę wartości zmiennej objaśniającej przy innych czynnikach niezmienionych.

►Przykład: oszacowano LMP postaci: Liniowy Model Prawdopodobieństwa (3) gdzie y(i) przyjmuje wartość 1, gdy dane gospodarstwo domowe posiada mieszkanie na własność i 0 w pozostałych przypadkach, zaś zmienna x określa miesięczny dochód rozporządzalny gospodarstwa domowego w tys. zł. ►Przy dochodzie rozporządzalnym równym 10 tys. zł prawdopodobieństwo tego, że dane gospodarstwo domowe posiada mieszkanie na własność wynosi 0.5, zaś wzrost dochodu o 1 tys. zł prowadzi do wzrostu prawdopodobieństwa posiadania mieszkania o 0.03.

Główne ograniczenia LMP: Liniowy Model Prawdopodobieństwa (4) ►Ograniczenie nr 1: ►składniki losowe w LMP nie mają rozkładu normalnego; ►analizując własności składnika losowego na podstawie poznanych wcześniej testów, dochodzimy do wniosku, że charakteryzuje się on heteroskedastycznością gdyż zachodzi: ►utrudniona jest więc ocena istotności dokonywana na podstawie standardowych testów ►Ograniczenie nr 2: ►teoretyczne wartości zmiennej objaśnianej mogą być mniejsze od 0 i większe od 1 ►uniemożliwia to ich interpretację w kategoriach prawdopodobieństwa

Liniowy Model Prawdopodobieństwa (5)

Model logitowy (1) ►Model logitowy bazuje na funkcji logistycznej określonej wzorem ►Przykład funkcji logistycznej:

►Funkcję logistyczną można sformułować w innej wersji, w której przyjmuje wartość nasycenia równą 1, stąd nadaje się do modelowania prawdopodobieństwa: Model logitowy (2) ►Model prawdopodobieństwa ma więc postać: gdzie: ►Z powyższego wynika, że

►Logit to logarytm ilorazu szans, czyli relacji prawdopodobieństwa zdarzenia, dla którego y przyjmuje wartość 1 i zdarzenia przeciwnego – relacja z zakładów bukmacherskich ►Przykład: przy strzelaniu do tarczy i prawdopodobieństwie trafienia w jej środek równym 0.33 iloraz szans wynosi ½, czyli szansa na trafienie vs. szansa na nietrafienie mają się jak 1 do 2. Model logitowy (3) ►Iloraz szans ma postać zaś logit:

►Z powyższego wynika interpretacja parametrów strukturalnych, która jest inna niż w LMP. Model logitowy (4) ►Z powyższego wynika, że zmiana wartości zmiennej o jednostkę prowadzi do wzrostu ilorazu szans o ►Wpływ zmian wartości zmiennej na wartość prawdopodobieństwa przyjęcia przez zmienną objaśnianą wartości 1 definiujemy jako efekt krańcowy i wyznaczamy ze wzoru

►Uwaga do interpretacji efektu krańcowego: wartość efektu krańcowego jest funkcją wartości pozostałych zmiennych objaśniających modelu. Oznacza to, że efekt krańcowy jest nieliniowy: ►wpływ na prawdopodobieństwo tej samej zmiany jednostkowej zmiennej objaśniającej prowadzi do innej zmiany prawdopodobieństwa w zależności od pozostałych wartości zmiennych objaśniających ►wartość efektu krańcowego podaje się dla zadanej wartości wszystkich zmiennych objaśniających modelu. Model logitowy (5) ►W pakietach ekonometrycznych podaje się efekty krańcowe dla średniej wartości prawdopodobieństwa.

►Standardowe miary dopasowania (stosowane w przypadku zwykłego modelu liniowego) w modelu logitowym nie znajdują zastosowania. Model logitowy (6) ►W modelu logitowym stosuje się inne metody estymacji, gdyż jest to model nieliniowy. Zazwyczaj jest to Metoda Największej Wiarygodności, gdzie maksymalizuje się funkcję wiarygodności postaci ►Na podstawie tej metody wyznacza się (wyliczany standardowo w większości pakietów) współczynnik pseudo-R^2 McFadena : gdzie L MP to wartość funkcji wiarygodności dla pełnego modelu (zawierającego wszystkie zmienne objaśniające) zaś L MZ to wartość funkcji wiarygodności dla modelu zredukowanego do wyrazu wolnego

►Druga standardowa miara dopasowania bazuje na tzw. tablicy trafności prognoz ex post konstruowanej według następującej procedury: Model logitowy (6) ►po estymacji parametrów modelu dokonuje się oszacowania wartości teoretycznych prawdopodobieństw według wzoru: ►dla tak wyznaczonych prawdopodobieństw wyznaczamy wartości teoretyczne zmiennej objaśnianej według ►(1) jeśli próba jest zbilansowana tzn. liczba 0 i 1 dla zmiennej objaśnianej jest mniej więcej równa ►(2) jeśli próba jest niezbilansowana, przy czym jest równa udziałowi wartości 1 w wartościach Y(i) (tzw. metoda optymalnej wartości granicznej Cramera)

►w kolejnym kroku tworzy się tablicę postaci: Model logitowy (7) ►wyznaczamy wartość tzw. R^2 zliczeniowego postaci EmpiryczneTeoretyczneRazem Y=1Y=0 Y=1N11N10N1. Y=0N01N00N0. RazemN.1N.0N

►W modelu probitowym wartość prawdopodobieństwa określona jest dystrybuantą standardowego rozkładu normalnego tzn. Model probitowy gdzie jest funkcją gęstości standardowego rozkładu normalnego ►Efekty krańcowe w tym modelu mają postać gdzie: ►Relacja między parametrami modelu logitowego i probitowego jest dana wzorem

►Jest to jeden z modeli służących do estymacji w przypadku zmiennej ograniczonej, czyli przyjmującej wartość liczbową w jakimś przedziale (gdy są obserwowalne) oraz wartość jakościową poza tym przedziałem (wtedy nadajemy im jakąś umowną wartość np. 0). Model tobitowy ►Najczęściej model opisujący kształtowanie się takiej zmiennej ma postać ►Model ten zwany też modelem normalnej regresji cenzurowanej ma zastosowanie w modelowaniu np. ►wydatków na zakup mieszkania w gospodarstwach domowych ►przychodów z pracy w danym okresie wśród osób o różnym statusie na rynku pracy ►nakładów inwestycyjnych w danym okresie

Dziękuję za uwagę