Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Trian_mon(P) Input: y-monotoniczny wielokąt zapamiętany jako zbiór boków, Output: triangulacja D jako zbiór krawędzi. 1.Wyodrębnij prawy i lewy łańcuch.

Podobne prezentacje


Prezentacja na temat: "Trian_mon(P) Input: y-monotoniczny wielokąt zapamiętany jako zbiór boków, Output: triangulacja D jako zbiór krawędzi. 1.Wyodrębnij prawy i lewy łańcuch."— Zapis prezentacji:

1 Trian_mon(P) Input: y-monotoniczny wielokąt zapamiętany jako zbiór boków, Output: triangulacja D jako zbiór krawędzi. 1.Wyodrębnij prawy i lewy łańcuch punktów, 2.Uporządkuj zbiór wierzchołków ze względu na współrzędną y For j=3 until n-1 do 5. If oraz ostatni punkt w S są na różnych łańcuchach then wstaw przekątną od do punktów z S, tak aby odciąć trójkąt od wielokąta. wstaw oraz do S. else usuń ostatni wierzchołek z S. 6.

2 Trian_mon(P) c.d. 7. Usuń kolejne wierzchołki S jeśli tylko przekątna z do tego wierzchołka zawiera się wewnątrz wielokąta. Wstaw te przekątne do D. Wstaw ostatni wyrzucony z S wierzchołek spowrotem do S. 8. Wstaw do S. Endif 9. Dodaj przekątne poprowadzone do wszystkich Wierzchołków z S za wyjątkiem pierwszego i ostatniego. Tw. Wielokąt monotoniczny może być striangularyzowany w czasie O(n log n) z wykorzystaniem O(n) pamięci.

3 Zawieranie się odcinka w wielokącie A B Jeśli odcinek przecina się z brzegiem na pewno nie zawiera się w wielokącie. Jeśli końcami odcinka są wierzchołki wielokąta to obowiązują tutaj te same zasady. Odcinek nie zawiera się w wielokącie, nie jest przekątną. Przecina brzeg wielokąta. Odcinek nie zawiera się w wielokącie, pomimo tego, że nie przecina brzegu.

4 Zawieranie się odcinka w wielokącie - c.d. Zachodzi następujące twierdzenie: Tw. Odcinek zawiera się w wielokącie wtedy i tylko wtedy, gdy nie przecina brzegu oraz przynajmniej jeden jego punkt wewnętrzny należy do wnętrza wielokąta. Dowód: Jest oczywistym, że jeśli odcinek zawiera się w wielokącie to nie przecina brzegu i każdy jego punkt wewnętrzny zawiera się w wielokącie w szczególności jakiś wybrany. Z drugiej strony, jeśli odcinek nie przecina brzegu i jeden z jego punktów wewnętrznych zawiera się wewnątrz wielokąta to wszystkie jego punkty też muszą się w nim zawierać, bo w przeciwnym razie ten odcinek przecinałby brzeg wielokąta. c.n.d.

5 Przynależność punktu do wielokąta Zachodzi następująca własność: Punkt P należy do wnętrza wielokąta wtedy i tylko wtedy, gdy półprosta pozioma wychodząca z tego punktu przecina nieparzystą liczbę razy brzeg tego wielokąta. P Q Punkt Q nie należy do wielokąt, natomiast P należy. A

6 Przecięcie odcinka z półprostą A B P Przecięcie półprostej l z odcinkiem [A,B] l={X=P+t[1,0]: t>0} X Równanie prostej m przechodzącej przez punkty A, B: m={X=A+sv, s jest liczbą rzeczywistą}. Jeśli X jest punktem wspólnym l i m to: X=P+t[1,0]=A+sv, czyli t[1,0]-sv=A. Niech wtedy stąd Jeśli t>0 oraz 0

7 Jeśli t>0 oraz 0

8 Przecięcie odcinka z półprostą c.d. Jeśliwtedy możemy uznać, że prosta l i odcinek [A,B] są równoległe. Przecięcie z brzegiem jest, jeśli Zwykle przyjmujemy W obliczeniach numerycznych zwykle układ punktów przeskalowywuje się i przesuwa, tak aby punkty mieściły się w kwadracie K=[0,1]×[0,1] i tak, żeby kwadrat K był najmniejszy ze wszystkich kwadratów o bokach równoległych do osi układu współrzędnych spełniających tą własność.

9 Przeskalowanie układu punktów Niech

10 Podział Dirichleta Def. Wielościanem Voronoi stowarzyszonym z punktem nazywamy zbiór: Lemat: Niech wówczas U jest hiperpłaszczyzną o normalnej oraz

11 Dowód N=3 N=2 A B C CA U U

12 Lemat c.d.

13 Własności wielościanów Voronoi

14

15

16 Wzór ten wynika bezpośrednio z definicji. - są zbiorami otwartymi, Dowód: na pewnowykażemy, że niech wówczas stąd c.n.d.

17 Własności wielościanów Voronoi (iv) Brzeg wielościanu Voronoi składa się z części hiperpłaszczyzn wyznaczonych przez przecięcia z częściami półprzestrzeniami przestrzeni n-wymiarowej. A B

18 Własności wielościanów Voronoi (v) Dowód: Hipoteza Co prowadzi do sprzeczności. C.n.d. (vi)wypukłe. Dowód: C n niech

19 Układy punktów w przestrzeni a wędrująca kula Tw. Z) Układ punktów nie leżących na jednej hiperpłaszczyźnie. T) Istnieje dokładnie jedna sfera przechodząca przez te punkty. Dowód:Szukamy punktu X, który spełnia:

20 Układy punktów w przestrzeni a wędrująca kula c.d. W postaci macierzowej: Na podstawie lematu układ wektorów jest układem liniowo niezależnym co oznacza, że macierz tego układu jest nieosobliwa. C.n.d.

21 Układy punktów w przestrzeni a wędrująca kula c.d. Lemat: część wspólna dwóch przecinających się sfer zawiera się w jednoznacznie wyznaczonej płaszczyźnie. x Dowód: Punkt wspólny x leżący na przecięciu obu sfer spełnia: Po odjęciu stronami: czyli c.n.d.

22 I twierdzenie Delaunaya Z) (i)rodzina sympleksów dzielących to znaczy (ii) Dowolny zbiór ograniczony ma część wspólną tylko ze skończoną liczbą sympleksów z (ii) Niech będzie zbiorem wszystkich punktów sympleksów rodziny Niech oznacza kulę przechodzącą przez wszystkie wierzchołki danego sympleksu T)nie zawiera wierzchołków w swoim wnętrzu i odwrotnie nie zawiera wierzchołkóww swoim wnętrzu i odwrotnie.

23 I twierdzenie Delaunaya c.d. Spełnione założenia tw. Delaunaya Nie spełnione założenia tw. Delaunaya Def. Układ punktów nazywamy układem osobliwym, jeśli k>N+1 oraz wszystkie jego punkty należą do jednej sfery w Przykład N=1

24 Konstrukcja triangularyzacji Delaunaya Def. Zbiór punktównazywamy osobliwym jeśli istnieje osobliwy podukład 1. Startujemy z dowolnego punktu 2. Znajdujemy punktleżący na okręgu o środkuI nie zawierający wewnątrz innego punktu z P. 3. Znajdujemy punkt leżący okręgu przechodzącym przez nie zawierający w swoim wnętrzu innych punktów.

25 Konstrukcja triangularyzacji Delaunaya N=2 c.d. 4. Konstruujemy trójkąt o wierzchołkach 5. Startujemy z dowolnego boku tego tego trójkąta. Prowadzimy okrąg przechodzący przez końce tego boku i punkt S P, tak aby ten okrąg nie zawierał w swoim wnętrzu innych punktów z P. 6. Proces kontynuujemy aż do wyczerpania punktów.


Pobierz ppt "Trian_mon(P) Input: y-monotoniczny wielokąt zapamiętany jako zbiór boków, Output: triangulacja D jako zbiór krawędzi. 1.Wyodrębnij prawy i lewy łańcuch."

Podobne prezentacje


Reklamy Google