Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Prądy sinusoidalne Wykłady z podstaw elektrotechniki i elektroniki Paweł Jabłoński.

Podobne prezentacje


Prezentacja na temat: "Prądy sinusoidalne Wykłady z podstaw elektrotechniki i elektroniki Paweł Jabłoński."— Zapis prezentacji:

1 Prądy sinusoidalne Wykłady z podstaw elektrotechniki i elektroniki Paweł Jabłoński

2 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 2 Co było do tej pory? Zajmowaliśmy się obwodami liniowymi i nieliniowymi prądu stałego. Wprowadziliśmy niezbędne pojęcia: prąd, natężenie prądu, napięcie, rezystancja. Podaliśmy także opis elementów obwodu: rezystora, cewki, kondensatora i źródeł napięcia i prądu. Podaliśmy metody rozwiązywania obwodów prądu stałego (liniowych i nieliniowych).

3 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 3 Na tym wykładzie Cel: Zapoznanie się z prostymi obwodami prądu sinusoidalnie zmiennego. Zakres: Przebiegi sinusoidalne Wskazy Związki między prądem i napięciem na rezystorze, cewce i kondensatorze Impedancja, admitancja, kąt fazowy Analiza prostych obwodów

4 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 4 Po co nam prądy sinusoidalne? W praktyce spotyka się zarówno napięcia stałe (np. 1,5 V baterii, 5 V zasilacza, 12 V akumulatora) jak i sinusoidalne (np. 230 V w gniazdku instalacji sieciowej). Prądy sinusoidalne są łatwo wytwarzane przez generatory z elementami wirującymi. Prądy sinusoidalne można transformować na wyższe i niższe napięcia za pomocą transformatorów. 1Przebieg sinusoidalny

5 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 5 Prąd sinusoidalny Najogólniejszy prąd sinusoidalny ma postać gdzie: i – wartość chwilowa, I m – wartość maksymalna (amplituda), T – okres, α – kąt fazowy. Wartości i(t) zmieniają się w czasie sinusoidalnie. Wartości i(t) powtarzają się po upływie okresu T. t T ImIm –Im–Im ωtωt α i(t)i(t)

6 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 6 Prąd sinusoidalny t i

7 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 7 Częstotliwość Odwrotność okresu nazywamy częstotliwością Jednostką częstotliwości jest Hz (herc, 1/s). Liczbowo częstotliwość jest równa ilości okresów w jednej sekundzie. Na przykład, 50 Hz oznacza, że wszystkie wartości funkcji powtarzają się kolejno 50 razy w ciągu sekundy.

8 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 8 Pulsacja Bardzo często używa się terminu pulsacja. Jest to częstotliwość pomnożona przez kąt pełny Jednostką pulsacji jest rad/s. Zapis funkcji sinusoidalnej jest wtedy bardziej zwięzły:

9 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 9 Skutki cieplne W celu oceny skutku cieplnego przepływu prądu okresowego i(t) zauważmy, że prąd stały I płynąc przez rezystor o rezystancji R przez czas t wydziela energię cieplną w ilości Dowolny prąd i wydzieli w niewielkim czasie Δt energię Przechodząc do infinitezymalnego przedziału czasu, dostaniemy Po scałkowaniu za okres otrzymujemy

10 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 10 Wartość skuteczna Zastępczy prąd stały I wywołujący takie same skutki cieplne jak prąd okresowy i nazywamy wartością skuteczną przebiegu okresowego i. Z określenia tego otrzymujemy równanie a stąd wartość skuteczna wynosi Dla sinusoidy t i i2i2

11 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 11 Pomiar prądu sinusoidalnego Co wskaże amperomierz w przypadku prądu sinusoidalnego? Wartość maksymalną? Skuteczną? Wartości chwilowe? Zero? W większości mierników będzie to wartość skuteczna. Niektóre mierniki wskazują wartość średnią (dla prądu sinusoidalnego będzie to zero).

12 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 12 Parametry przebiegu sinusoidalnego I m – wartość maksymalna (amplituda), i – wartość chwilowa, I – wartość skuteczna, T – okres, f – częstotliwość, ω – pulsacja, α – kąt fazowy.

13 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 13 Sinusoida – interpretacja geometryczna Z zależności na prąd sinusoidalny mamy Wartość chwilowa i(t) jest rzutem na oś Oy odcinka o długości I m wychodzącego z początku układu współrzędnych pod kątem ωt + α do osi Ox. 2Wskazy

14 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 14 Wirujący wskaz Wraz z upływem czasu odcinek ten wiruje wokół początku układu współrzędnych. Ten wirujący odcinek nazywać będziemy wirującym wskazem przebiegu sinusoidalnego. Sinusoida jest w pełni określona przez jej wirujący wskaz.

15 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 15 Suma sinusoid i ich wskazy Rozpatrzmy sumę dwóch sinusoid: Wypadkowa funkcja też jest sinusoidą. Każda z tych trzech sinusoid ma swój wirujący wskaz. Mimo wirowania, wskazy zachowują względem siebie ustalone położenie. Wniosek: zamiast wirujących wskazów można rozpatrywać ich fotografię w pewnej chwili, tzn. wskazy nieruchome. i 1 (t) = I m1 sin(ωt + α) i 2 (t) = I m2 sin(ωt + β) i 1 (t) + i 2 (t) = I m sin(ωt + γ)

16 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 16 Wskaz wielkości sinusoidalnej Każdemu przebiegowi sinusoidalnemu przyporządkowujemy wskaz. Długość wskazu jest równa amplitudzie I m lub wartości skutecznej I. Wskaz rysujemy pod kątem równym kątowi fazowemu α sinusoidy (względem osi odniesienia – zwykle jest to oś pozioma). ωtωt i –α–α ImIm I α I

17 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 17 Dodawanie wskazów Aby dodać dwie sinusoidy o wartościach skutecznych I 1 i I 2 oraz kątach fazowych α i β, korzystamy z konstrukcji graficznej dla ich wskazów. Rysujemy wskazy obydwu sinusoid. Wskaz ich sumy powstaje jako geometryczna (wektorowa) suma wskazów I 1 i I 2. I1I1 α I γ I2I2 β i 1 (t) = I m1 sin(ωt + α) i 2 (t) = I m2 sin(ωt + β) i 1 (t) + i 2 (t) = I m sin(ωt + γ)

18 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 18 Dodawanie wskazów – wnioski Z konstrukcji tej otrzymujemy: Wnioski: – w ogólności I I 1 + I 2. Wolno dodawać tylko wskazy, a nie wartości skuteczne. – Przebiegi sinusoidalne wygodnie sumuje się za pomocą wskazów. I1I1 I2I2 I α γ β I 2 cos(βα) β–αβ–α I 2 sin(βα) i 1 (t) = I m1 sin(ωt + α) i 2 (t) = I m2 sin(ωt + β) i 1 (t) + i 2 (t) = I m sin(ωt + γ)

19 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 19 Elementy obwodu prądu sinusoidalnego Typowy obwód prądu sinusoidalnego zawiera: – Rezystory (element pasywny czynny), – Cewki (element pasywny bierny), – Kondensatory (element pasywny bierny), – Elementy źródłowe, tj. źródła napięcia i prądu sinusoidalnego (elementy aktywne). 3Elementy RLC

20 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 20 Źródło napięcia i źródło prądu Źródła napięcia zmiennego będziemy oznaczać tak jak stałego, lecz bez symboli + i. Strzałka napięcia sinusoidalnego wskazuje wyższy potencjał dla dodatnich chwilowych wartości napięcia. Strzałka prądu sinusoidalnego wskazuje kierunek ruchu ładunków dodatnich dla dodatnich wartości chwilowych prądu.

21 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 21 Rezystor Niezależnie od kształtu przebiegu czasowego prądu i napięcia, dla rezystora liniowego zachodzi zależność Jeżeli to Wniosek: prąd i napięcie rezystora są w fazie. u i R t u i

22 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 22 u i R Rezystor dla prądu sinusoidalnego Prąd i napięcie są w fazie, tzn. mają ten sam kąt fazowy. Wskazy prądu i napięcia są równoległe. I α U ω t u i

23 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 23 Cewka Niezależnie od kształtu przebiegu czasowego prądu i napięcia, dla cewki liniowej zachodzi zależność Jeżeli to Wniosek: napięcie wyprzedza prąd o 90°. u i L t u i

24 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 24 u i L Cewka dla prądu sinusoidalnego Prąd spóźnia się za napięciem o 90°, czyli napięcie wyprzedza prąd o 90°. Wskazy napięcia i prądu są prostopadłe, przy czym wskaz prądu spóźnia się za wskazem napięcia o 90°. I α U ω t u i

25 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 25 Reaktancja indukcyjna Wielkość nazywamy reaktancją indukcyjną albo oporem biernym indukcyjnym. Reaktancję wyraża się w omach. Zależność pomiędzy wartościami skutecznymi prądu i napięcia na cewce ma postać (prawo Ohma dla cewki) Często zamiast indukcyjności L podaje się reaktancję X L.

26 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 26 Reaktancja indukcyjna a częstotliwość Reaktancja indukcyjna zależy od częstotliwości prądu płynącego przez cewkę. – im większa częstotliwość tym większa reaktancja cewki (tym większy opór stawia), – dla prądu stałego ( ω = 0) cewka stanowi zwarcie, gdyż wtedy X L = 0, – dla bardzo dużych częstotliwości cewka stanowi praktycznie przerwę (wykorzystuje się to do tłumienia prądów o dużych częstotliwościach). ω XLXL XLXL

27 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 27 Kondensator Niezależnie od kształtu przebiegu czasowego prądu i napięcia, dla kondensatora liniowego Jeżeli to Wniosek: napięcie spóźnia się za prądem o 90°. u i C t u i

28 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 28 Kondensator dla prądu sinusoidalnego Prąd wyprzedza napięcie o 90°, czyli napięcie spóźnia się za prądem o 90°. Wskazy napięcia i prądu są prostopadłe, przy czym wskaz prądu wyprzedza wskaz napięcia o 90°. u i C I α U ω t u i

29 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 29 Reaktancja pojemnościowa Wielkość nazywamy reaktancją pojemnościową albo oporem biernym pojemnościowym. Reaktancję wyraża się w omach. Zależność pomiędzy wartościami skutecznymi prądu i napięcia ma postać (prawo Ohma dla kondensatora) Często zamiast pojemności C podaje się reaktancję X C.

30 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 30 Reaktancja poj. a częstotliwość Reaktancja pojemnościowa zależy od częstotliwości napięcia na zaciskach kondensatora. – im większa częstotliwość tym mniejsza reaktancja kondensatora (tym mniejszy opór stawia), – dla prądu stałego ( ω = 0) kondensator stanowi przerwę, gdyż wtedy X C =, – dla bardzo małych częstotliwości kondensator stanowi praktycznie przerwę (wykorzystuje się to do tłumienia napięć o małych częstotliwościach). ω XCXC XCXC

31 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 31 Elementy RLC – podsumowanie I U I U I U RL C

32 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 32 Reguła CIUL W przyswojeniu co za czym się spóźnia, jeśli chodzi o cewkę i kondensator, pomocna może być reguła mnemotechniczna zwana CIUL. Czytając pierwsze trzy litery od początku: dla C mamy I potem U, Czytając ostatnie trzy litery od końca: dla L mamy U potem I. Czytając całość od początku: … teraz już chyba zapamiętacie!

33 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 33 Prąd i napięcie sinusoidalne Jeżeli przez liniowy dwójnik płynie prąd sinusoidalny, to napięcie na jego zaciskach jest również sinusoidalne. W ogólności dla dowolnego dwójnika liniowego mamy Dla każdego takiego dwójnika możemy narysować wykres wskazowy. Wykres ten w pełni określa wartości chwilowe prądu i napięcia. 4Impedancja Dwójnik i u I α U β ω

34 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 34 Moduł impedancji Modułem impedancji dwójnika pasywnego (lub niezbyt precyzyjnie – impedancją), nazywamy iloraz wartości skutecznej napięcia do wartości skutecznej prądu Jest to uogólnienie pojęcia rezystancji na przypadek prądów sinusoidalnych. Jednostką impedancji jest 1 om (1 Ω), czyli tak jak rezystancji. Dwójnik pasywny i u I α U β ω

35 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 35 Kąt fazowy dwójnika (odbiornika) Kątem fazowym dwójnika nazywamy różnicę pomiędzy kątami fazowymi napięcia i prądu Kąt fazowy jest kątem pomiędzy wskazami napięcia i prądu. Kąt fazowy dwójnika pasywnego zawiera się od 90° do 90°. Kąt ten jest dodatni, gdy napięcie wyprzedza prąd, zaś ujemny, gdy napięcie spóźnia się za prądem. Dwójnik pasywny i u φ = β – α I α U β ω

36 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 36 Prąd, napięcie, impedancja i kąt fazowy Jeżeli dwójnik pasywny o danym module impedancji Z i kącie fazowym φ zasilimy napięciem sinusoidalnym to popłynie prąd Z, φ i u φ = β – α I α U β ω

37 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 37 Elementy RLC – impedancja RL C I U I U 90° I U

38 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 38 Susceptancja Odwrotność reaktancji nazywa się susceptancją Jednostką susceptancji jest 1 simens (1 S).

39 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 39 Admitancja Modułem admitancji nazywamy odwrotność modułu impedancji Jest to uogólnienie pojęcia konduktancji. Jednostką admitancji jest 1 simens (1 S).

40 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 40 Elementy RLC – podsumowanie RL C I U I U 90° I U

41 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 41 Nowe pojęcia Wielkości omowe: – Rezystancja R (resistere – opierać się), opór czynny - opór stawiany prądowi przez rezystor, – Reaktancja X (reagere – reagować), opór bierny – opór stawiany prądowi przez cewkę lub kondensator. – Impedancja Z (impedere – zawadzać), opór pozorny – opór wypadkowy stawiany przez dwójnik pasywny. Wielkości simensowe: – Konduktancja G (conducere – prowadzić, przewodzić), przewodność czynna – odwrotność rezystancji. – Susceptancja B (suscipere – popierać), przewodność bierna – odwrotność reaktancji. – Admitancja Y (admittere – pospieszać), przewodność pozorna – odwrotność impedancji.

42 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 42 Impedancja i kąt fazowy Każdy dwójnik pasywny charakteryzuje się: – modułem impedancji Z = U / I, – kątem fazowym φ. Moduł impedancji jest nieujemną liczbą rzeczywistą. Kąt fazowy przyjmuje wartości z zakresu od 90° do +90°. Wartości te są niezależne od wartości skutecznej prądu i napięcia dwójnika, ale zależą od częstotliwości. Wartości te są określone jedynie dla przebiegów sinusoidalnych. Dwójnik i uφ I U

43 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 43 Trójkąt impedancji Narysujemy trójkąt prostokątny o kącie φ i przeciwprostokątnej Z. Przyprostokątne wyrażają się wzorami oraz zachodzą związki. Jest to tzw. trójkąt impedancji. Każdy dwójnik pasywny charakteryzuje się zatem pewną rezystancją R i reaktancją X. Dwójnik Z, φ R X Z φ

44 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 44 Metoda klasyczna Za pomocą wskazów można rozwiązywać proste obwodu prądu sinusoidalnego. Metoda taka nazywa się klasyczną. Polega ona na budowaniu wykresu wskazowego w oparciu o zależności wiążące prąd i napięcie na poszczególnych elementach. 5Szeregowe gałęzi RL i RC

45 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 45 Przykład – szeregowa gałąź RLC Rozważmy szeregową gałąź RLC zasilaną napięciem Rysujemy obwód dla wartości skutecznych. Załóżmy, że znamy prąd I. Napięcia na elementach (wartości skuteczne) są równe Czy U = U R + U L + U C ? NIE – nie wolno dodawać wartości skutecznych! Wolno dodawać wartości chwilowe ( u = u R + u L + u C ), co odpowiada dodawaniu geometrycznemu wskazów. L u i uRuR uLuL R uCuC C U I URUR ULUL R XLXL UCUC XCXC

46 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 46 U I URUR ULUL R XLXL UCUC XCXC Szeregowa gałąź RLC – wykres Dowolnie zaznaczamy wskaz prądu I. W fazie z nim zaznaczamy wskaz napięcia na rezystorze U R. Napięcie na cewce wyprzedza prąd o 90°, więc wskaz U L zaznaczamy jako obrócony o +90° względem prądu. Napięcie na kondensatorze spóźnia się za prądem o 90°, więc wskaz U C zaznaczamy jako obrócony o 90° względem prądu. Suma wskazów U R, U L i U C daje wskaz napięcia zasilania U. Pomiędzy wskazami U i I zaznaczamy kąt fazowy φ. URUR ULUL φ U UCUC I

47 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 47 Szeregowa gałąź RLC – impedancja Z wykresu Stąd moduł impedancji Kąt fazowy U I URUR ULUL R XLXL UCUC XCXC I URUR φ U UCUC ULUL U L – U C URUR

48 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 48 Wartości chwilowe Skoro to Ponadto I URUR φ U UCUC ULUL u i uRuR uLuL R uCuC C

49 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 49 A bez wykresu wskazowego Oczywiście moglibyśmy nie używać wykresów wskazowych, tylko napisać ogólne równanie wynikające z drugiego prawa Kirchhoffa Ponieważ to dostajemy Jest to równanie różniczkowo-całkowe dla i(t). Można je rozwiązać bez wykresu wskazowego, ale metoda z wykresem jest znacznie szybsza i łatwiejsza. Na tym polega jej użyteczność. u i uRuR uLuL R uCuC C

50 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 50 Wnioski Obwody prądu sinusoidalnego rozwiązujemy za pomocą wykresów wskazowych. Dzięki temu unika się rozwiązywania równań różniczkowych. Nie wolno sumować wartości skutecznych – sumować należy tylko wskazy. Mówimy, że napięcia w oczku oraz prądu w węźle sumuje się geometrycznie. Wykresy wskazowe konstruuje się w ten sposób, aby: – Wskazy napięcie i prądu rezystora były w fazie, – Wskaz prądu cewki spóźniał się za wskazem napięcia na niej o 90°, – Wskaz prądu kondensatora wyprzedzał wskaz napięcia na nim o 90°.

51 Paweł Jabłoński, Podstawy elektrotechniki i elektroniki 51 Czego się nauczyliśmy? Przypomnieliśmy parametry przebiegu sinusoidalnego. Poznaliśmy wskazy i ich związek z wartością chwilową sinusoidalną. Omówiliśmy właściwości elementów R, L i C w odniesieniu do prądów sinusoidalnych. Wprowadziliśmy pojęcie impedancji, reaktancji i podobnych. Pokazaliśmy sposób rozwiązywania obwodu za pomocą wykresu wskazowego. Podsumowanie


Pobierz ppt "Prądy sinusoidalne Wykłady z podstaw elektrotechniki i elektroniki Paweł Jabłoński."

Podobne prezentacje


Reklamy Google