Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

WYSZUKIWANIE I PORZĄDKOWANIE INFORMACJI WPROWADZENIE DO ALGORYTMIKI Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu

Podobne prezentacje


Prezentacja na temat: "WYSZUKIWANIE I PORZĄDKOWANIE INFORMACJI WPROWADZENIE DO ALGORYTMIKI Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu"— Zapis prezentacji:

1

2 WYSZUKIWANIE I PORZĄDKOWANIE INFORMACJI WPROWADZENIE DO ALGORYTMIKI Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu 2 informatyka +

3 Algorytm, algorytmika Algorytm – opis rozwiązania krok po kroku postawionego problemu lub sposobu osiągnięcia jakiegoś celu Pierwszy algorytm – algorytm Euklidesa 300 p.n.e algorytm od Muhammad ibn Musa al-Chorezmi IX w. Algorytmika – dziedzina zajmująca się algorytmami i ich własnościami informatyka + 3

4 Algorytmy a informatyka Informatyka – jedna z definicji: dziedzina wiedzy i działalności zajmująca się algorytmami Czy zajmuje się też algorytmami kulinarnymi? Donald E. Knuth: Mówi się często, że człowiek dotąd nie zrozumie czegoś, zanim nie nauczy tego – kogoś innego. W rzeczywistości, człowiek nie zrozumie czegoś (algorytmu) naprawdę, zanim nie zdoła nauczyć tego – komputera. Ralf Gomory (IBM): Najlepszym sposobem przyspieszania komputerów jest obarczanie ich mniejszą liczbą działań (szybszymi algorytmami) informatyka + 4

5 Algorytmiczne rozwiązywanie problemu Dla problemu – chcemy otrzymać rozwiązanie komputerowe, które jest: zrozumiałe dla każdego, kto zna problemu poprawne, czyli spełnia specyfikację (opis) problemu efektywne, czyli nie marnuje czasu i pamięci Metoda rozwiązywania: analiza sytuacji problemowej sporządzenie specyfikacji: wykaz danych, wyników i relacji projekt rozwiązania komputerowa realizacja rozwiązania – implementacja testowanie poprawności rozwiązania dokumentacja i prezentacja rozwiązania informatyka + 5

6 Rozwiązywanie problemów z pomocą komputerów Objaśnienie dwóch terminów: Problem: problem, gdy nie podano nam, jak należy go rozwiązać, ale wiemy wystarczająco, by poradzić sobie z nim a więc, problem jest dla każdego nie tylko dla orłów Programowanie: komputery wykonują tylko programy cokolwiek uruchamiamy na komputerze: Google, dokument w Word, arkusz w Excel, naciśnięcie klawisza – jest programem każdy widoczny i niewidoczny efekt działania komputera to wynik działania jakiegoś programu Konkluzja: powinniśmy lepiej poznać programowanie komputerów informatyka + 6

7 Myślenie algorytmiczne Myślenie komputacyjne (ang. computational thinking) informatyka + 7 Reklama firmy IBM z 1924 roku Komputer to maszyna do myślenia !!!

8 Problemy, algorytmy i ich komputerowe realizacje (implementacje) Plan: Pierwszy algorytm – przeszukiwanie zbioru schematy blokowe algorytm optymalny Kompletowanie podium zwycięzców turnieju Jednoczesne znajdowanie najmniejszego i największego elementu zasada dziel i zwyciężaj Porządkowanie przez wybór – iteracja algorytmu Poszukiwanie informacji: w zbiorze nieuporządkowanym w zbiorze uporządkowanym informatyka + 8

9 Znajdowanie elementu w zbiorze Znajdź element w zbiorze: najwyższego ucznia w swojej klasie – metoda spaghetti jak zmieni się Twój algorytm, jeśli chciałbyś znaleźć w klasie najniższego ucznia znajdź w swojej klasie ucznia, któremu droga do szkoły zabiera najwięcej czasu znajdź najstarszego (lub najmłodszego) ucznia w swojej szkole znajdź największą kartę w potasowanej talii kart znajdź najlepszego tenisistę w swojej klasie – nie ma remisów znajdź najlepszego gracza w warcaby w swojej klasie – możliwe są remisy Podstawowa operacja – porównanie: dwóch liczb lub kombinacji liczb (data, karty): czy x < y ? dwóch zawodników: rozegranie meczu informatyka + 9

10 Specyfikacja problemu Specyfikacja problemu – dokładne opisanie problemu Problem Min – Znajdowanie najmniejszego elementu w zbiorze Dane: Liczba naturalna n i zbiór n liczb dany w ciągu x 1, x 2,..., x n Wynik: Najmniejsza wśród liczb x 1, x 2,..., x n – oznaczmy ją min Metoda rozwiązania: przeszukiwanie liniowe – od lewej do prawej Algorytm Min – Znajdowanie najmniejszego elementu w zbiorze Krok 1. Przyjmij za min pierwszy element w zbiorze (w ciągu), czyli przypisz min := x 1. Krok 2. Dla kolejnych elementów x i, gdzie i = 2, 3,..., n, jeśli min > x i, to przypisz min := x i. Algorytm Max – prosta modyfikacja: zamiana > na < Wyznaczanie imin – indeksu elementu o wartości min informatyka + 10 imin := 1 imin := i

11 Algorytm Min – demo Demonstracja przeszukiwania od lewej do prawej: informatyka + 11

12 (Zgrubny) schemat blokowy algorytmu Min informatyka + 12 Instrukcja iteracyjna Instrukcje warunkowe: rozgałęzienia algorytmu Ada Augusta, córka Byrona, uznawana powszechnie za pierwszą programistkę komputerów, przełomowe znaczenie maszyny analitycznej Ch. Babbagea, pierwowzoru dzisiejszych komputerów, upatrywała właśnie w możliwości wielokrotnego wykonywania przez nią danego ciągu instrukcji, z liczbą powtórzeń z góry zadaną lub zależną od wyników obliczeń, a więc w iteracji. Krok 1: Krok 2: min pierwszy element ze zbioru A Czy porównano wszystkie elementy ze zbioru A ? Nie min > x ? Tak x kolejny element ze zbioru A Tak min x Nie Koniec algorytmu

13 Pełny schemat blokowy algorytmu Min informatyka + 13

14 Skomputeryzowany schemat blokowy informatyka + 14 Schemat blokowy wykonany w programie ELI Ciąg (tablica) z danymi Bloki warunkowe Iteracja Wprowadzanie danych

15 Algorytm Min w postaci programu Program w języku Pascal program Min; var i,imin,min,n,x:integer; begin read(n); read(x); min:=x; imin:=1; for i:=2 to n do begin read(x); if min > x then begin min:=x; imin:=i end end; write(imin,min) end. informatyka + 15 nazwa programu deklaracje, typy zmiennych blok programu – początek czytaj n czytaj pierwszy element iteracja od 2 do n czytaj kolejny element instrukcja warunkowa popraw min instrukcja war. – koniec iteracja – koniec pisz wynik blok programu – koniec

16 Warsztaty Algorytm, język programowania, komputer informatyka + 16 Proces komputerowej realizacji algorytmu: Opis algorytmu Zapis w języku programowania (Pascal, C++) Przetłumaczenie na język zrozumiały przez komputer Wykonanie Testowanie

17 Pracochłonność algorytmu Min Porównanie – podstawowa operacja w algorytmie Min. Pracochłonność (złożoność obliczeniowa) algorytmu – liczba podstawowych operacji wykonywanych przez algorytm. Pytanie: Ile porównań wykonuje algorytm Min? Odpowiedź: o jedno mniej niż jest elementów, czyli n – 1 Pytania: Czy można szybciej? Czy istnieje szybszy algorytm znajdowania min? A może metoda pucharowa wyłaniania zwycięzcy w turnieju jest szybsza? informatyka + 17

18 Wyłanianie najlepszego zawodnika w turnieju czyli inny sposób znajdowania max (lub min) informatyka + 18 BartekRomek Bolek Witek TomekZenek Tolek Felek Bartek Witek Tomek Tolek Bartek Tomek Porównania – mecze Ośmiu zawodników: 7 meczy n zawodników: n – 1 meczy a więc nie jest szybsza

19 A może mamy algorytm najlepszy? Podsumowanie: Mamy dwa algorytmy znajdowania min lub max: przeszukiwanie liniowe rozegranie turnieju które na zbiorze n elementów wykonują n – 1 porównań Może nie ma szybszego algorytmu? TAK! Hugo Steinhaus tak to uzasadnił: Jeśli Tomek jest zwycięzcą turnieju, w którym startuje n zawodników, to każdy inny spośród n – 1 zawodników musiał przegrać przynajmniej raz, a zatem rozegrano przynajmniej n – 1 meczy. Zatem każdy algorytm musi wykonać przynajmniej n – 1 porównań, czyli nasze algorytmy są najszybsze – są optymalne. informatyka + 19

20 A jak znaleźć drugiego najlepszego zawodnika w turnieju? informatyka + 20 BartekRomek Bolek Witek TomekZenek Tolek Felek Bartek Witek Tomek Tolek Bartek Tomek Czy jest nim Bartek? Bo przegrał z Tomkiem? Ale Bartek nie grał z drugą połową! ??? Tylko dwa dodatkowe mecze!

21 Jednoczesne znajdowanie min i max informatyka + 21 Obserwacja: jeśli x y, to x kandydatem na min, a y kandydatem na max Algorytm dziel i zwyciężaj: Krok 1. Podział na kandydatów na min i kandydatów na max Kandydaci na max Kandydaci na min max = 8 min = 1 Krok 2. Znajdź min i max Liczba porównań: algorytm naiwny: n – 1 (min) + n – 2 (max) = 2n – 3 algorytm dziel i zwyciężaj: n/2(podział)+ (n/2–1)(min) + (n/2–1)(max) ok. 3n/2 – 2 – jest to algorytm optymalny Porównania parami 3 3 ? ? ? ? ? 5 2

22 Problem porządkowania (sortowania) Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,..., x n Wynik: Uporządkowanie tego ciągu liczb od najmniejszej do największej Algorytm: porządkowanie przez wybór – Selection Sort Idea: najmniejszy wśród nieuporządkowanych daj na początek Krok 1. Dla i = 1, 2,..., n – 1 wykonaj kroki 2 i 3, a następnie zakończ algorytm Krok 2. Znajdź k takie, że x k jest najmniejszym elementem w ciągu x i,..., x n Krok 3. Zamień miejscami elementy x i oraz x k informatyka + 22

23 Porządkowanie przez wybór – demo (1) informatyka + 23 Żółte – podciąg już uporządkowany Zielone i czerwone – podciąg porządkowany

24 Porządkowanie przez wybór – demo (2) informatyka + 24 Podciąg już uporządkowany Podciąg porządkowany

25 Złożoność porządkowania przez wybór Liczba zamian elementów w kolejnych krokach: … + 1 = n – 1 Liczba porównań w kolejnych krokach: (n – 1) + (n – 2) + (n – 3) + … = ? informatyka Przykład n = 6 6 = n 5 = n – 1 Pole prostokąta: 5 x 6 Suma = pole czarnych diamentów: 5 x 6 2 Ogólnie suma: (n – 1) x n 2 Liczby trójkątne

26 Poszukiwanie elementu w zbiorze Problem poszukiwania elementu w zbiorze Dane: Zbiór elementów w postaci ciągu n liczb x 1, x 2,..., x n. Wyróżniony element y Wynik: Jeśli y należy do tego zbioru, to podaj jego miejsce (indeks) w ciągu, a w przeciwnym razie – sygnalizuj brak takiego elementu w zbiorze Dwa przypadki: Nieuporządkowany ciąg liczb x 1, x 2,..., x n Uporządkowany ciąg liczb x 1, x 2,..., x n Nasz cel: Jakie są korzyści z uporządkowania? Jak utrzymywać porządek wśród informacji? informatyka + 26 – wstaw y do ciągu

27 Poszukiwania w zbiorze nieuporządkowanym Algorytm – Poszukiwanie liniowe Krok 1. Dla i = 1, 2,..., n, jeśli x i = y, to przejdź do kroku 3. Krok 2. Komunikat: W ciągu danych nie ma elementu równego y. Zakończ algorytm: – wynik: –1 Krok 3. Element równy y znajduje się na miejscu i w ciągu danych. Zakończ algorytm: wynik: i begin i:=1; while (x[i]<>y) and (i

28 Poszukiwania w zbiorze nieuporządkowanym z wartownikiem Algorytm – Poszukiwanie liniowe z wartownikiem Takie same kroki algorytmu inna implementacja, czyli komputerowa realizacja: na końcu ciągu: x 1 x 2 x 3 x 4 … x n begin i:=1; x[n+1]:=y; while x[i]<>y do i:=i+1; if i<=n then PrzeszukiwanieLinioweWartownik:=i else PrzeszukiwanieLinioweWartownik:=-1 end informatyka + 28 wstawiamy wartownika – pilnuje końca ciągu x n+1 Nie ma sprawdzania, czy koniec ciągu

29 Poszukiwanie w zbiorze uporządkowanym Zabawa w zgadywanie liczby informatyka + 29 Zgadywana liczba: 17 w przedziale [1 : 20] Metoda: połowienia przedziału Kolejne kroki: strzałka wskazuje wybór; kolor czerwony – ciąg do przeszukania: 5 porównań zamiast 20 !!!

30 Poszukiwanie przez połowienie w ciągu uporządkowanym function PrzeszukiwanieBinarne(x:tablicax; k,l:integer; y:integer):integer; {Przeszukiwanie binarne ciagu x[k..l] w poszukiwaniu elementu y.} var Lewy,Prawy,Srodek:integer; begin Lewy:=k; Prawy:=l; while Lewy<=Prawy do begin Srodek:=(Lewy+Prawy) div 2; if x[Srodek]=y then begin PrzeszukiwanieBinarne:=Srodek; exit end; {element y nalezy do przeszukiwanego ciagu} if x[Srodek]

31 Dane: Uporządkowany ciąg liczb w tablicy x[k..l] oraz element y Wynik: Miejsce dla y w ciągu x[k..l] takie, aby po wstawieniu y ciąg nadal był uporządkowany Algorytm: y wstawiamy do przeszukiwanego ciągu w to miejsce, gdzie algorytm poszukiwania kończy działanie, a więc tam, gdzie jest y (jeśli y jest już w ciągu), albo gdzie powinien być. informatyka + 31 Umieszczanie przez połowienie w ciągu uporządkowanym

32 Liczba kroków w algorytmie połowienia: Ile razy należy przepołowić ciąg o danej długości, aby znaleźć element lub miejsce dla niego? Przykład dla n = 1200 Kolejne długości ciągu: 1200, 600, 300, 150, 75, 38, 19, 10, 5, 3, 2, 1 11 razy dzielono ciąg o długości 1200, by pozostał 1 element Liczba porównań w algorytmach poszukiwania dla n = 1200: przez połowienie 11 liniowy 1200 informatyka + 32 Poszukiwanie przez połowienie złożoność Porównaj, jaka jest potęga uporządkowania !!!

33 Dla n = 1200 liczba porównań w algorytmie połowienia wyniosła 11 Pytania: Jak liczba porównań zależy od n? Jak dobry jest to algorytm? Liczba porównań dla różnych n: informatyka + 33 Poszukiwanie przez połowienie złożoność – dla orłów n liczba porównań ok.log 2 n Funkcja logarytm, bardzo ważna w algorytmice logarytm to anagram od algorytm Algorytm poszukiwania przez połowienie jest optymalny, czyli najszybciej przeszukuje zbiory uporządkowane.

34 Pokrewne zajęcia w Projekcie Informatyka + Wykład+Warsztaty (Wszechnica Poranna): Wprowadzenie do algorytmiki i programowania – wyszukiwanie i porządkowanie informacji Proste rachunki wykonywane za pomocą komputera. Techniki algorytmiczne – przybliżone (heurystyczne) i dokładne. Wykłady (Wszechnica Popołudniowa): Czy wszystko można policzyć na komputerze? Porządek wśród informacji kluczem do szybkiego wyszukiwania. Dlaczego możemy się czuć bezpieczni w sieci, czyli o szyfrowaniu informacji. Znajdowanie najkrótszych dróg, najniższych drzew, najlepszych małżeństw informatyka + 34

35 Pokrewne zajęcia w Projekcie Informatyka + Kursy (24 godz.) – Wszechnica na Kołach: Algorytmy poszukiwania i porządkowania. Elementy języka programowania Różnorodne algorytmy obliczeń i ich komputerowe realizacje Grafy, algorytmy grafowe i ich komputerowe realizacje Kursy (24 godz.) – Kuźnia Informatycznych Talentów – KIT dla Orłów: Przegląd podstawowych algorytmów Struktury danych i ich wykorzystanie Zaawansowane algorytmy Tendencje – Wykłady Algorytmy w Internecie, K. Diks Czy P = NP, czyli jak wygrać milion dolarów w Sudoku, J. Grytczuk Między przeszłością a przyszłość informatyki, M.M Sysło informatyka + 35

36


Pobierz ppt "WYSZUKIWANIE I PORZĄDKOWANIE INFORMACJI WPROWADZENIE DO ALGORYTMIKI Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu"

Podobne prezentacje


Reklamy Google