Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Systemy liczbowe opracowanie: Agata Idczak. System liczbowy to inaczej zbiór reguł do jednolitego zapisywania i nazywania liczb. dla każdego systemu liczbowego.

Podobne prezentacje


Prezentacja na temat: "Systemy liczbowe opracowanie: Agata Idczak. System liczbowy to inaczej zbiór reguł do jednolitego zapisywania i nazywania liczb. dla każdego systemu liczbowego."— Zapis prezentacji:

1 Systemy liczbowe opracowanie: Agata Idczak

2 System liczbowy to inaczej zbiór reguł do jednolitego zapisywania i nazywania liczb. dla każdego systemu liczbowego istnieje zbiór znaków, za pomocą których tworzy się liczby. Znaki te zwane cyframi można zestawiać ze sobą na różne sposoby otrzymując nieskończoną liczbę kombinacji.

3 Dziesiętny system liczbowy zwany też systemem decymalnym lub arabskim to pozycyjny system liczbowy, w którym podstawą pozycji są kolejne potęgi liczby 10. Do zapisu liczb potrzebne jest więc 10 cyfr: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

4 Jak w każdym pozycyjnym systemie liczbowym, liczby zapisuje się tu jako ciąg cyfr, z których każda jest mnożnikiem kolejnej potęgi liczby stanowiącej podstawę systemu. Część całkowitą i ułamkową oddziela separator dziesiętny Pozycyjny, dziesiętny system liczbowy jest obecnie na świecie podstawowym systemem stosowanym niemal we wszystkich krajach. Dziesiętny system liczbowy

5 Dwójkowy system liczbowy (inaczej binarny) to pozycyjny system liczbowy, w którym podstawą pozycji są kolejne potęgi liczby 2. Do zapisu liczb potrzebne są więc tylko dwa znaki: 0 i 1. powszechnie używany w informatyce.

6 System binarny to system, dzięki któremu powstały maszyny cyfrowe w tym i komputery. Komputer składa się z części elektronicznych, gdzie wymiana informacji polega na odpowiednim przesyłaniu sygnałów. Podstawą elektroniki jest prąd elektryczny, który w układach elektronicznych albo płynie albo nie. Komputer rozpoznaje sygnały i interpretuje płynący prąd jako "1", a jego brak jako "0". Operując odpowiednim ustawieniem, kiedy ma płynąc prąd, a kiedy nie ustawia różne wartości zer i jedynek. Procesor konwertuje je na liczby i w ten sposób powstają czytelne dla nas obrazy, teksty, dźwięk itp Dwójkowy system liczbowy

7 liczba zapisana w dziesiętnym systemie liczbowym jako 10, w systemie dwójkowym przybiera postać 1010, gdyż: 1x x x x2 0 = 8+2 = 10 Dwójkowy system liczbowy

8 Obliczanie wartości binarnej liczby zapisanej w systemie dziesiętnym zamiana na liczbę w systemie dwójkowym: 30 ÷ 2 = 15 reszty 0 15 ÷ 2 = 7 reszty 1 7 ÷ 2 = 3 reszty 1 3 ÷ 2 = 1 reszty 1 1 ÷ 2 = 0 reszty 1 Aby obliczyć wartość dwójkową liczby przepisujemy od końca reszty, które nam wyszły. Tak więc = Dwójkowy system liczbowy

9 Konwersji (zamiany) liczby w systemie dziesiętnym na system dwójkowy można dokonać poprzez wielokrotne dzielenie przez 2 i spisywanie reszt z dzielenia. Podczas dzielenia można otrzymać reszty 0 albo 1. Przy ilorazie równym zero należy spisać ostatnią resztę i odczytać ciąg utworzony z reszt zaczynając od ostatniej, kończąc na pierwszej. Utworzony w ten sposób ciąg jest reprezentacją binarną liczby dziesiętnej Dwójkowy system liczbowy

10 Obliczanie wartości dziesiętnej liczby zapisanej w systemie dwójkowym =11110= 1x x x x x2 0 = 1 x x x x x 1 = = 30 Dwójkowy system liczbowy

11 127 ÷ 2 = 63 reszty 1 19 ÷ 2 = 9 reszty 1 63 ÷ 2 = 31 reszty 1 9 ÷ 2 = 4 reszty 1 31 ÷ 2 = 15 reszty 1 4 ÷ 2 = 2 reszty 0 15 ÷ 2 = 7 reszty 1 2 ÷ 2 = 1 reszty 0 7 ÷ 2 = 3 reszty 1 1 ÷ 2 = 0 reszty 1 3 ÷ 2 = 1 reszty = (10011) 2 1 ÷ 2 = 0 reszty = ( ) 2 Dwójkowy system liczbowy

12 Dodawanie liczb Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie dwójkowym mamy tylko dwie cyfry 0 i 1, zatem tabliczka dodawania jest prosta i składa się tylko z czterech pozycji: = = = = 10 Dwójkowy system liczbowy

13 Mnożenie liczb Mnożenie liczb w układzie dwójkowym jest szczególnie proste, gdyż cała tabliczka mnożenia przedstawia się następująco: 0 0 = = = = 1 Dwójkowy system liczbowy

14 Odejmowanie można zastąpić dodawaniem, jeżeli utworzy się dopełnienie odejmowanej liczby. Dzielenie w układzie dwójkowym to wielokrotne odejmowanie Dwójkowy system liczbowy

15 System ósemkowy, zwany też oktogonalnym. Podstawą tego systemu jest liczba 8 i posiada on osiem cyfr: 0, 1, 2, 3, 4, 5, 6, 7. Liczba 8 to trzecia potęga dwójki. Każdym trzem cyfrom systemu binarnego (dwójkowego) odpowiada jedna cyfra systemu ósemkowego. System ten więc jest również wykorzystywany w informatyce. Ósemkowy system liczbowy

16 Jak w każdym pozycyjnym systemie liczbowym, liczby zapisuje się tu jako ciągi cyfr, z których każda jest mnożnikiem kolejnej potęgi liczby będącej podstawą systemu, np. liczba zapisana w dziesiętnym systemie liczbowym jako 100, w ósemkowym przybiera postać 144, gdyż: 1× × ×8 0 = = 100. Ósemkowy system liczbowy

17 Przykład zamiany liczby z systemu dziesiętnego na system ósemkowy 100:8 = 12 reszty = 4 12:8 =1 reszty = 4 1:8= 0 reszty = 1 Teraz czytamy od dołu: 144 w systemie oktalnym to 100 w systemie dziesiętnym. Ósemkowy system liczbowy

18 Szesnastkowy system liczbowy system różny od tego, którego używamy na co dzień. Różni się o tyle, że bazuje na liczbie 16, a więc potrzebuje 16 znaków za pomocą, których można zapisać dowolną liczbę. Szesnastkowy system liczbowy jest właściwy komputerom, ponieważ pozwala na zapis większych liczb w mniejszych przestrzeniach pamięci.

19 Szesnastkowy system liczbowy W systemie szesnastkowym wyróżniamy 16 cyfr: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Często system szesnastkowy jest określany nazwą Hex od słowa stworzonego przez firmę IBM hexadecimal.

20 Szesnastkowy system liczbowy Jak w każdym pozycyjnym systemie liczbowym, liczby zapisuje się tu jako ciągi znaków, z których każdy jest mnożnikiem kolejnej potęgi liczby stanowiącej podstawę systemu, np. liczba zapisana w dziesiętnym systemie liczbowym jako 1000, w hex przybiera postać 3E8, gdyż: 3× × ×16 0 = = = 1000.

21 Szesnastkowy system liczbowy Hex jest powszechnie używany w informatyce, ponieważ wartość pojedynczego bajtu można opisać używając tylko dwóch cyfr szesnastkowych. W ten sposób można kolejne bajty łatwo przedstawić w postaci ciągu liczb hex. Jednocześnie zapis 4 bitów można łatwo przełożyć na jedną cyfrę hex.

22 Szesnastkowy system liczbowy Dla przykładu: 2 16 = dec = hex 2 24 = dec = hex 2 32 = dec = hex = dec = FFFF hex = dec = FF.FFFF hex = dec = FFFF.FFFF hex FFFF hex, FF.FFFF hex i FFFF.FFFF hex są krótsze i łatwiejsze do zapamiętania.

23 Konwersji (zamiany) liczby w systemie dziesiętnym na system heksadecymalny można dokonać poprzez wielokrotne dzielenie przez 16 i spisywanie reszt z dzielenia. Przy ilorazie równym zero należy spisać ostatnią resztę i odczytać ciąg utworzony z reszt zaczynając od ostatniej, kończąc na pierwszej. Utworzony w ten sposób ciąg jest reprezentacją szesnastkową liczby dziesiętnej. Dziesiętny system liczbowy


Pobierz ppt "Systemy liczbowe opracowanie: Agata Idczak. System liczbowy to inaczej zbiór reguł do jednolitego zapisywania i nazywania liczb. dla każdego systemu liczbowego."

Podobne prezentacje


Reklamy Google