Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Prof. Dr Franciszek Kubiczek Rok akademicki 2011/2012 TRENDY I WAHANIA OKRESOWE TRENDS AND PERIODICAL FLUCTUATIONS 9.

Podobne prezentacje


Prezentacja na temat: "Prof. Dr Franciszek Kubiczek Rok akademicki 2011/2012 TRENDY I WAHANIA OKRESOWE TRENDS AND PERIODICAL FLUCTUATIONS 9."— Zapis prezentacji:

1 Prof. Dr Franciszek Kubiczek Rok akademicki 2011/2012 TRENDY I WAHANIA OKRESOWE TRENDS AND PERIODICAL FLUCTUATIONS 9

2 ZMIANY W CZASIE Trendy długoterminowe (T) – long-term trends Cykle koniunkturalne (C) – business cycle Wahania sezonowe (S) – seasonal variations Zmiany przypadkowe (P) – random fluctuations

3 Trend (T) – długookresowa (zwykle wieloletnia) tendencja oznaczająca systematyczny wzrost lub spadek obserwowanych w szeregu czasowym wielkości. Trend – wynik działania przyczyny głównej. Wyodrębnienie trendu (determining of the trend) - podstawą do długoterminowych prognoz. Oczyszczenie szeregu czasowego z trendu pozwala z kolei na analizę krótkookresowych zmian (cykli, wahań sezonowych itp) TREND IS MY FRIEND TRENDY (TENDENCJE)

4 CYKLE KONIUNKTURALNE Cykle (C) – systematyczne zmiany - wahania koniunkturalne -występujące w dłuższych okresach czasu, krótszych niż trendy, lecz dłuższych niż rok. Ich rozpoznanie jest ważne dla właściwej interpretacji wyników: pozorna, krótkookresowa poprawa lub pogorszenie wyników nie musi oznaczać poprawy lub pogorszenia sytuacji w dłuższym okresie, może to bowiem właśnie wynikać z powtarzających się wahań koniunkturalnych. Pełny cykl koniunkturalny: recesja, depresja, ożywienie i prosperity. W dalszej prezentacji – ze względu na wejście tego tematu do przedmiotu – ekonometria, oraz w celu uproszczenia wykładu temat zostanie pominięty.

5 W praktyce analitycznej przyjęto, że: Recesja występuje wtedy, gdy dwa kwartały z rzędu PKB wykazuje spadek w porównaniu do poprzedniego roku; Depresja występuje wtedy, gdy przez 36 miesięcy PKB wykazuje spadek w porównaniu do poprzednich lat; Niektórzy analitycy dodają, że spadek ten powinien wynosić co najmniej 10% przez minimum 1 rok a stopa bezrobocia sięga co najmniej 11%. RECESJA, DEPRESJA

6 Regularne zmiany (S), powtarzające się z okresu na okres, na ogół w okresie rocznym lub krótszym. Są to regularne wahania (odchylenia od tendencji rozwojowej) związane np. z porami roku, jak w rolnictwie, turystyce bądź np. porą dnia (nocy), jak w energetyce (zużyciu energii). Można obliczyć wskaźniki sezonowości (amplitudę wahań) - bardzo pomocne w prognozowaniu krótkookresowym. WAHANIA SEZONOWE

7 ZMIANY PRZYPADKOWE (NIEREGULARNE) Zmiany przypadkowe (P): wszystkie nieregularne zmiany, spowodowane przyczynami ubocznymi, losowymi; Składnik losowy w modelu ekonometrycznym. Ich rozpoznawanie pozwala na dokładniejsze określenie trendu i wahań sezonowych.

8 CELE ANALIZ W analizie szeregów czasowych staramy się wyodrębnić trendy i wahania (odchylenia od trendu) i dokonać ich pomiaru. Dekompozycja szeregu czasowego. Rezultaty analizy możemy wykorzystać w celu prognozowania zjawiska na przyszłość bądź interpolacji Analizę rozpoczynamy zwykle od sporządzenia wykresu w układzie współrzędnych: na osi odciętych (x) odkłada się jednostki czasu, najczęściej oznaczanych literą t, a na osi rzędnych (y) wartości cechy.

9 MODELE Addytywne (additive) X = T + C + S + P dla trendów liniowych - poszczególne składowe szeregu są sumowane Multiplikatywne (multiplicative) X = T x C x S x P dla trendów nieliniowych - jest to iloczyn składowych szeregu czasowego Wybór modelu analizy i prognozy zjawiska zależy od rodzaju występujących w nim wahań sezonowych. Jeśli amplituda tych wahań jest stała – wybierzemy model addytywny, jeśli zmienna ale w stałym stosunku – model multiplikatywny. Modele addytywne – sumaryczne; modele multiplikatywne - iloczynowe

10 METODY WYODRĘBNIANIA TRENDU Mechaniczne: - Średnia ruchoma (moving average) - Metoda graficzna (graphical method) - Wygładzanie wykładnicze Browna (exponential smoothing) - Ekstrapolacja (extrapolation) Analityczne: - Metoda najmniejszych kwadratów (least squares method)

11 Wynajęte pokoje turystom zagranicznym w hotelach

12

13 ŚREDNIA RUCHOMA (KROCZĄCA) Wzór: y i = ( y i + y i+1 + y i+2 ):3 y 1 = (y 1 + y 2 + y 3 ):3, y 2 = (y 2 + y 3 + y 4 ):3, y 3 = (y 3 + y 4 + y 5 ):3 itd. gdzie: y i - średnia ruchoma y 1, y 2, y 3,..., y n - wartości szeregu czasowego okres = 3 jest przykładowy Długość okresu (tzw. kroku), wynikać powinna z analizy specyfiki przebiegu danego zjawiska (procesu). Wybór zależy od analityka, który ma do dyspozycji odpowiednie kryteria.

14 ŚREDNIA RUCHOMA - PRZYKŁAD a)Trzyokresowa y 1 = (174, , ,5) : 3 = 201,0 y 2 = (184, , ,6) : 3 = 232,5 y 3 = (244, , ,8) : 3 = 292,0 b) Pięciookresowa y 1 =(174, , , , ,8) : 5 = 246,9 y 2 =(184, , , , ,0) : 5 = 283,9 y 5 =(362, , , , ,3) : 5 = 369,3

15 Wynajęte pokoje turystom zagranicznym w hotelach

16 Wynajęte pokoje turystom zagranicznym w hotelach

17 Wynajęte pokoje turystom zagranicznym w hotelach

18 Wynajęte pokoje turystom zagranicznym w hotelach

19 Wynajęte pokoje turystom zagranicznym w hotelach

20 WYZNACZANIE WSKAŹNIKA SEZONOWOŚCI Procedura analiz i obliczeń: wygładzenie szeregu czasowego (metody analityczne lub mechanicznie) uwolnienie szeregu czasowego od trendu; otrzymane wartości zawierają wahania sezonowe i przypadkowe eliminacja wahań przypadkowych; otrzymane wartości to surowe wskaźniki wahań sezonowych obliczenie czystych (oczyszczonych) wskaźników sezonowych

21 WSKAŹNIKI SEZONOWOŚCI (NIEOCZYSZCZONE) Przy występowaniu sezonowości, średnia ruchoma musi obejmować taką liczbę elementów, które obejmują pełny rok; czyli trzyelementowa dla informacji kwartalnych, dwunastoelementowa dla informacji miesięcznych itd. Jeżeli surowy szereg - Y t - podzielimy przez szereg średniej ruchomej (dla odpowiednich okresów) – T - to iloraz ten będzie wyrażał sezonowość i zmiany przypadkowe Y/T = T x S x P/T = S x P SZEREG SUROWY TREND WAHANIA SEZONOWE ZMIANY PRZYPADKOWE

22 Wynajęte pokoje turystom zagranicznym w hotelach

23

24 WSKAŹNIKI SEZONOWOŚCI OCZYSZCZONEJ LATAMIESIĄCE WSKAŹNIK SEZONOWOSCI OCZYSZCZONEJ w % POPRAWIONY WSKAŹNIK SEZONOWOŚCI w % LIPIEC7 129,3 129,6 SIERPIEŃ8 131,3 131,6 WRZESIEŃ9 129,8 130,1 PAŹDZIERNIK10 107,8 108,0 LISTOPAD11 78,4 78,5 GRUDZIEŃ12 62,8 62, STYCZEŃ13 58,8 58,9 LUTY14 61,7 61,8 MARZEC15 81,4 81,5 KWIECIEŃ16 93,7 93,9 MAJ17 129,1 129,3 CZERWIEC18 133,4 133, , ,0 1) Uśrednianie wskaźników sezonowości nieoczyszczonej dla tych samych okresów np. dla LIPCA (132, , ,1) : 3 = 129,3 2) W ten sposób oczyszczamy z czynnika przypadkowego; często nazywane poprawianiem wskaźników sezonowości: : 1 197,4 = 1,0022 WSPÓŁCZYNNIK KOREKTY np. dla LIPCA 129,3 x 1,0022 = 129,6

25 Wynajęte pokoje turystom zagranicznym w hotelach, motelach i pensjonatach wg m-cy

26 Poprawiony wskaźnik sezonowości

27 Założenie: liczba turystów zagranicznych na 2002 r. = 3 190,6 tys. średniomiesięcznie: 265,9 tys. WYKORZYSTANIE WSKAŹNIKÓW SEZONOWYCH DO PROGNOZ KRÓTKOOKRESOWYCH ODCHYLENIE PRZECIĘTNE WSPÓŁCZYNNIK ZMIENNOŚCI I 58,1151,2154,4-3,2265,9-114,7 II 59,2151,1157,5-6,4265,9-114,8 III 81,6227,7216,910,8265,9-38,2 IV 93,0243,9247,2-3,3265,9-22,0 V 130,0338,9345,6-6,7265,973,0 VI 134,0362,4356,46,0265,996,5 VII 132,3347,1351,7-4,6265,981,2 VIII 134,6359,2358,01,2265,993,3 IX 132,6363,0352,510,5265,997,1 X 107,9291,5286,84,7265,925,6 XI 76,4196,3203,3-7,0265,9-69,6 XII 60,4158,3160,6-2,3265,9-107,6 ROK ,63190,8 ŚredniaOdchylenie MIESIĄCE Wskaźnik sezonowości w % Rzeczywista liczba turystów w tys. Liczba turystów wg wskaźników sezonowości

28 OCZYSZCZANIE Z WAHAŃ SEZONOWYCH Jeżeli znamy już wskaźnik sezonowości (S) dla poszczególnych okresów (miesięcy, kwartałów) to dzieląc surowy szereg Y przez czynnik sezonowy (S) otrzymamy szereg oczyszczony z sezonowości, lecz zawierający zmiany przypadkowe Y/S = T x S x P/S = T x P

29 OCZYSZCZANIE Z WAHAŃ SEZONOWYCH Np. dla stycznia 1997 = 174,2 : 0,581 RZECZYWISTA LICZBA TURYSTÓWWSKAŹNIK SEZONOWOŚCI MIESIĄCE \ ROK SZEREG OCZYSZCZONY Z WAHAŃ SEZONOWYCH w tysiącach pokoi STYCZEŃ 1300,1269,2298,87255,81264,59260,46258,56 LUTY 2311,4277,8302,77265,45255,66255,15253,46 MARZEC 3299,7268,4298,72242,21263,42279,11261,46 KWIECIEŃ 4288,9280,1275,43260,16263,92262,31274,14 MAJ 5279,2275,2266,86261,08267,7260,78287,09 CZERWIEC 6267,8270,4266,84266,47273,78270,35269,82 LIPIEC 7282,5263,9260,25275,76267,59262,45292,09 SIERPIEŃ 8273,3258,7269,96262,91277,83266,77313,78 WRZESIEŃ 9289,2259,9253,86268,94261,85273,85311,79 PAŹDZIERNIK 10271,1284,5260,59267,82251,78270,23311,57 LISTOPAD 11268,4303,2263,46262,28252,34256,79284,39 GRUDZIEŃ 12289,1302,8254,64252,49246,86262,1291,07

30 Wynajęte pokoje turystom zagranicznym w hotelach

31

32 Wynajęte pokoje turystom zagranicznym w hotelach

33 Wynajęte pokoje turystom zagranicznym w hotelach

34 Wynajęte pokoje turystom zagranicznym w hotelach

35 KRYTERIA WYBORU Kryteria wyboru okresu średniej ruchomej: MSE (Mean Square Error) RMSE (Root-mean square error) MAE (Mean absolute error) MAPE (Mean absolute percentage error) Wybieramy okres dla średniej ruchomej o najmniejszym błędzie!!!

36 ŚREDNI BŁĄD KWADRATOWY MSE (błąd średniokwadratowy) RMSE Te dwie miary są bardzo wrażliwe na wartości nietypowe: duże, choć rzadkie błędy prognozy Y t – szereg surowy F t – szereg prognozowany (wyrównany)

37 MAE (średni błąd absolutny) MAPE (procentowy średni błąd absolutny) Średni błąd absolutny charakteryzuje mniejsza wrażliwość na rzadkie duże błędy prognozy, ponieważ miara ta jest obliczana na podstawie bezwzględnych, a nie kwadratowych odchyleń od wartości rzeczywistej. Procentowy średni błąd absolutny właściwie mierzy błędy prognozy w stosunku do modułu prognozowanej zmiennej.

38 SZEREG CZASOWY BEZ TRENDU Szereg czasowy, w którym nie obserwujemy trendu ani wahań okresowych, dominują natomiast odchylenia przypadkowe. W pierwszym kroku, obliczamy średnią wartość zjawiska dla całego okresu i tę traktujemy jako wyjściową dla prognozowania, na najbliższy okres wychodzący poza szereg

39 Kryteria wyboru: błędy prognozy są faktycznie dobrymi miarami dokładności prognozy. W procedurze prognozowania szeregu czasowego bez trendu chodzi nam o prognozę o jeden krok do przodu, czyli na moment t+1, w której okresem wyjściowym prognozy (forecast origin) jest moment t. Znamy wartości zmiennej do momentu t i stojąc przy ostatniej znanej wartości patrzymy do przodu o jeden moment (dzień,tydzień, miesiąc, kwartał, rok itd.), a więc na moment t+1 i prognozujemy wartość naszej zmiennej na ten właśnie moment. Prognozowanie w dłuższym horyzoncie czasu (lead time) wymaga znajomości modeli Boxa-Jenkinsa. KRYTERIA WYBORU PROCEDURY

40 PROCEDURA Obliczamy średnie ruchome np. 4-tygodniowe i ta średnia jest prognozą dla 5-tego tygodnia, itd. dla następnych tygodni W kolejnej kolumnie obliczamy średnie ruchome np. 5-cio tygodniowe - ta średnia jest prognozą dla 6-tego tygodnia itd. dla następnych tygodni W kolejnych kolumnach obliczamy różnice między danymi rzeczywistymi i średnimi ruchomymi – dla danych okresów W następnych kolumnach różnice te (tzw. błędy prognozy) podnosimy do kwadratu W rezultacie zastosowania odpowiednich wzorów otrzymujemy tzw. średnie błędy, a te są kryterium wyboru długości okresu dla obliczeń średnich ruchomych Kierując się tym kryterium poszukujemy optymalnej długości okresu, przy którym błąd ten jest najniższy.

41 Ruch graniczny samochodów osobowych Polaków z Polski wg miesięcy w 2003 r 609,0

42 PORÓWNANIE PROGNOZ Średnie trzymiesięczne: MSE = :9 = ,2 RMSE = Przy tej średniej błąd jest najmniejszy; wybieramy zatem średnią trzymiesięczną Średnie czteromiesięczne: MSE = :8 = ,2 RMSE = Średnie pięciomiesięczne: MSE = :7 = ,3 RMSE =

43 METODA WYRÓWNANIA (WYGŁADZANIA) - BROWNA Alternatywną metodą wygładzania i prognozowania zjawisk charakteryzujących się brakiem trendu i sezonowości jest prosta metoda wyrównania (wygładzania) wykładniczego Browna F t+1 = a Y t + ( 1 - a) F t F t+1 = F t + a ( Y t – F t ) F t+1 powstaje przez dodanie do wartości wygenerowanej dla okresu poprzedzającego (F t ) części błędu (a) popełnionego przy prognozie dla tego właśnie okresu (Y t – F t ) lub gdzie: a – stała wygładzania Y t – elementy surowego szeregu czasowego F t - elementy szeregu wyrównanego

44 SZUKAMY OPTYMALNEJ STAŁEJ a = stała wygładzania Parametr ten zawarty jest między wartościami: 0 i 1 Poszukujemy takiej wielkości stałej (a), przy której MSE jest najmniejszy, tzn. najmniejsza jest różnica pomiędzy rzeczywistym szeregiem czasowym i szeregiem wygenerowanym przy zastosowaniu tej procedury wygładzania Procedurę można oprogramować w Excelu i nastawić na poszukiwanie takiej a, przy której MSE (błąd prognozy) jest najniższy Dane bieżące i historyczne: im wyższa wartość stałej a tym większą wagę przywiązujemy do danych bieżących (bliższych) niż historycznych (dalszych)

45 PROCEDURA - PRZYKŁAD a = 0,2 F 1 = Y 1 = 626,7 F 2 = 0,2 Y 1 + 0,8 F 1 = 0,2 * 626,7 + 0,8 * 626,7 = 626,7 F 3 = 0,2 Y 2 + 0,8 F 2 = 0,2 * 608,5 + 0,8 * 626,7 = 623,1 F 7 = 0,2 Y 6 + 0,8 F 6 = 0,2 * 715,7 + 0,8 * 629,5 = 646,8 F 13 = 0,2 Y ,8 F 12 = 0,2 * 608,3 + 0,8 * 704,5 = 685,3

46 Przykład a=0,8 Ruch graniczny samochodów osobowych Polaków z Polski w 2003 r

47 Przykład a=0,2 Ruch graniczny samochodów osobowych Polaków z Polski w 2003 r Miesiące t LICZBA SAMOCHODÓW Y t F t Y t - F t (Y t - F t ) STYCZEŃ 1 LUTY 2 MARZEC 3 KWIECIEŃ 4 MAJ 5 CZERWIEC 6 LIPIEC 7 SIERPIEŃ 8 WRZESIEŃ 9 PAŹDZIERNIK 10 LISTOPAD 11 GRUDZIEŃ ,7 0,00 608,5626,7-18, ,4612,117, ,2625,9-54, ,9582,1110, ,7670,745, ,5706,7150, ,7827,3152, ,4949,2-247, ,0 751,0 -88, ,8680,6-49, ,3640,8-32, ,

48 Przykład a=0,4 Ruch graniczny samochodów osobowych Polaków z Polski w 2003 r Miesiące t LICZBA SAMOCHODÓW Y t F t Y t - F t (Y t - F t ) STYCZEŃ 1 LUTY 2 MARZEC 3 KWIECIEŃ 4 MAJ 5 CZERWIEC 6 LIPIEC 7 SIERPIEŃ 8 WRZESIEŃ 9 PAŹDZIERNIK 10 LISTOPAD 11 GRUDZIEŃ ,7 0, ,5626,7-18, ,4619,410, ,2623,4-52, ,9602,590, ,7638,777, ,5669,5188, ,7744,7235, ,4838,7-137, ,0783,8 -120, ,8735,5-104, ,3 693,6-85, ,

49 Przykład a=0,6 Ruch graniczny samochodów osobowych Polaków z Polski w 2003 r Miesiące t LICZBA SAMOCHODÓW Y t F t Y t - F t (Y t - F t ) STYCZEŃ 1 LUTY 2 MARZEC 3 KWIECIEŃ 4 MAJ 5 CZERWIEC 6 LIPIEC 7 SIERPIEŃ 8 WRZESIEŃ 9 PAŹDZIERNIK 10 LISTOPAD 11 GRUDZIEŃ , ,5 629,4 571,2 692,9 715,7 857,5 979,7 701,4 663,0 630,8 608,3 626,70,0 626,7-18, ,813, ,0-52, ,3100, ,763, ,5167, ,7 189, ,1-202, ,5 -119, ,8 -80, ,8-54, ,

50 Ruch graniczny samochodów osobowych Polaków z Polski w 2003 r Szereg surowy a=0,2 a=0,8 a=0,4 a=0, IIIIIIIVVVIVIIVIIIIXXXIXII Szereg surowy a=0,2 a=0,8 a=0,4 a=0,6

51 PORÓWNANIE PROGNOZ a = 0,2 MSE = :12 = RMSE = a = 0,8 MSE = :12 = RMSE = przy a=0,8 błąd jest najmniejszy a = 0,4 MSE = :12= RMSE = a = 0,6 MSE = :12= RMSE =

52 EKSTRAPOLACJA (1) Polega na przedłużeniu kierunku i dynamiki rozwoju zjawiska z okresu, z którego pochodzą obserwacje, na okres prognozowany Graficznie: sprowadza się do przedłużenia linii trendu poza przedział obserwacji; Analitycznie: wymaga wyznaczenia wartości trendu dla kolejnych, dalszych wyrazów wartości szeregu czasowego

53 EKSTRAPOLACJA (2) Prosta metoda ekstrapolacji trendu wg wzoru: - prognozowany poziom zjawiska ( na okres n+1 ) n - liczba okresów poprzedzających okres prognozy n+1 - okres prognozowany k=1, ……., n - kolejne okresy poprzedzające prognozę

54 EKSTRAPOLACJA (3) Metoda ekstrapolacji daje dobre wyniki w prognozach jednorocznych Największy dodatni wpływ na wartość prognozy mają wartości najbliższe okresowi prognozowanemu, a ujemny z okresach najdalszych; Im dłuższy szereg czasowy znanych obserwacji, tym większa jakość prognozy

55 Ekstrapolacja trendu - Pokoje wynajęte turystom zagranicznym

56

57 Ekstrapolacja trendu - PKB na głowę

58

59

60

61

62 JAKOŚCIOWE METODY PROGNOZOWANIA Metoda delficka Burza mózgów Prognozowanie heurystyczne Metoda porównawcza

63 METODA DELFICKA (Delphi method) Pierwsi opisali N. Dalkey i O. Helmer w 1963 r. Pierwsze zastosowanie w RAND Corporation w Kalifornii. Nazwa pochodzi od miejscowości Delfy w Grecji (wyrocznia delficka). Zbieranie informacji nt prawdopodobnego przebiegu zjawisk wśród ekspertów w danej dziedzinie. Lista pytań (szczegółowe ankiety, odpowiedzi liczbowe) i dobór ekspertów (wybitni specjaliści z różnych dziedzin). Na podstawie statystycznej oceny odpowiedzi (anonimowe) uzyskuje się uogólnioną opinię ekspertów. Iteracyjne podejście. Eksperci pracują oddzielnie. Wady i zalety tego sposobu pracy. Metoda delficka stosowana jest głównie do prognozowania techniki, rozwoju gospodarczego i różnych dziedzin działalności. Jest metodą inwentywną (inwentyka, innowatyka, heurystyka – twórcze rozwiązywanie problemów creative problems solving), opartą na skojarzeniach wymuszonych.

64 METODA DELFICKA – etapy postępowania 1. zdefiniowanie problemu 2. wybór grupy ekspertów 3. przygotowanie i rozesłanie ankiety ekspertom z postawionym problemem i dodatkowymi pytaniami 4. eksperci przedstawiają opinię o problemie i odpowiadają na pytania zawarte w ankiecie 5. analiza zebranych opinii o problemie i odpowiedzi na pytania z ankiety 6. jeżeli brak zgodności to rozesłanie kolejnej ankiety zawierającej bliższe sprecyzowanie problemu oraz listę anonimowych opinii i odpowiedzi na pytania i przejście do pkt takich rund może być kilka 8. jeżeli zgodność poglądów to prezentacja wyników.

65 Zalety: 1. niezależność opinii ekspertów 2. anonimowość wypowiadanych sądów 3. wieloetapowość postępowania 4. uzgadnianie i sumowanie opinii osób kompetentnych Wady: 1. konieczność angażowania dużej liczby osób 2. czasochłonność 3. brak bezpośredniej wymiany poglądów między ekspertami 4. trudności w doborze odpowiednich osób 5. małe angażowanie ekspertów, jeśli nie są zaznajomieni z problemem METODA DELFICKA – zalety i wady

66 BURZA MÓZGÓW (The brainstorming) Twórca metody: A. F. Osborn – 1953 r. Technika wywodząca się z psychologii społecznej, która ma na celu doskonalenie decyzji grupowych. Jest również dyskusji dydaktycznej, wykorzystywanej jako jedna z metod nauczania (metoda aktywizująca). Rozmowa z grupą ekspertów w jednym miejscu. Dobór ekspertów: kompetentni i zróżnicowane doświadczenia i poglądy. Istota polega na formułowaniu przez ekspertów jak największej liczby poglądów nt zjawiska w przyszłości. Rozmowa bezpośrednia lub opinie pisemne. Rozdziela się fazę tworzenia (nie krytykować i wytworzyć dużą liczbę pomysłów) od fazy oceny pomysłów. Oddzielne zespoły (twórczy i oceniający).

67 BURZA MÓZGÓW (The brainstorming) Stosowana do rozwiązywania skomplikowanych problemów, w krótkim okresie: np. projektowania i modernizacji organizacji i zarządzania oraz procesów produkcyjnych. W jednej z wersji składa się z dwóch etapów: 1. osoby uczestniczące zachęcane są do swobodnego zgłaszania pomysłów i poglądów z zastrzeżeniem braku jakiegokolwiek krytycyzmu. Wszystkie pomysły są zapisywane. 2. ekspert lub grupa ekspertów nieuczestniczących w pierwszy etapie przegląda wyniki i stara się odsiać idee mające sens.

68 Obecność osoby silnie dominującej w pierwszym etapie, Zbyt duża ambicja niektórych uczestników, nie pozwalających innym dojść do głosu, Niewielka otwartość na nowe idee ekspertów oceniających pomysły, Skłonność uczestnika do zmiany tematu na niezwiązany z zadaniem (syndrom grupowego myślenia) BURZA MÓZGÓW – czynniki deformujące

69 PROGNOZOWANIE HEURYSTYCZNE Heurystyka: kojarzone ze słynnym okrzykiem Archimedesa; greckie: heuresis – odkryć, heureka – znaleźć. Heurystyka: umiejętność wykrywania nowych faktów i związków między faktami, formułowanie hipotez. Określane także jako intuicyjne Nie jest wynikiem ekstrapolowania przeszłości w przyszłość Opiera się na opinii ekspertów, która jest wypadkową ich wiedzy, doświadczenia, wyobraźni i intuicji Jest prognozowaniem rozwoju interesujących nas zjawisk i procesów i ukazywaniem najbardziej realistycznych wariantów

70 PROGNOZOWANIE HEURYSTYCZNE Pierwszy etap: eksperci budują model zjawiska i rozważają co może wpłynąć na jego zmianę i jakie to może wywołać skutki i wybierają wariant najbardziej prawdopodobny Drugi etap: polega na nieświadomym porządkowaniu i kojarzeniu w rozmaity sposób informacji dotyczącej fragmentu rzeczywistości, którego przyszłość nas interesuje. Ważna sprawa: właściwy dobór ekspertów, wysokiej klasy i o różnorodnych poglądach. Metody heurystyczne są stosowane przy prognozowaniu zjawisk niemierzalnych lub mierzalnych o bardzo długim horyzoncie czasowym.

71 METODA PORÓWNAWCZA – The comparative method (ANALOGOWA, KOMPARATYWNA) W przypadku wielu problemów można się doszukać ich rozwiązań z przeszłości, gdyż zjawiska się nieraz powtarzają w analogicznych warunkach. Trzeba ustalić, do czego można porównać, poszukiwać podobieństw. Ze względu na: wartości zmiennych opisujących obiekty oraz postacie powiązań między parami lub większą liczbę zmiennych. Korekta tych rozwiązań stosownie do stopnia podobieństwa. Szerokie zastosowanie w prognozach jakościowych i ilościowych.

72 METODA PORÓWNAWCZA (2) Metoda analogii biologicznych – przenoszenie zasad budowy i funkcjonowania organizmów żywych na inne obiekty; Metoda analogii przestrzennych – wnioskowanie o możliwości zaistnienia określonego zjawiska na danym terytorium na podstawie informacji o wystąpieniu takiego zjawiska na innym terytorium (kraju, regionie); Metoda analogii historycznych – zakłada, że prawidłowości zmian w czasie (przeszłym) jednych zjawisk są przenoszone na inne (nowe) zjawiska; Metoda analogii przestrzenno-czasowych – kombinacja powyższych dwóch metod. Polega na przenoszeniu z jednych obiektów (zjawisk, procesów) do innych – prawidłowości zmian zjawisk w czasie. Metody te są przydatne w prognozowaniu popytu na dobra i usługi zaspokajające potrzeby wyższego rzędu. Są także przydatne do prognozowania demograficznego: ponieważ u podstaw wielu zachowań (zjawisk) demograficznych tkwią tendencje imitacyjne.


Pobierz ppt "Prof. Dr Franciszek Kubiczek Rok akademicki 2011/2012 TRENDY I WAHANIA OKRESOWE TRENDS AND PERIODICAL FLUCTUATIONS 9."

Podobne prezentacje


Reklamy Google