Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

1 Algorytmy genetyczne - plan wykładu Wstęp Standardowy algorytm genetyczny Matematyczne podstawy algorytmów genetycznych Techniki poprawiające efektywność

Podobne prezentacje


Prezentacja na temat: "1 Algorytmy genetyczne - plan wykładu Wstęp Standardowy algorytm genetyczny Matematyczne podstawy algorytmów genetycznych Techniki poprawiające efektywność"— Zapis prezentacji:

1 1 Algorytmy genetyczne - plan wykładu Wstęp Standardowy algorytm genetyczny Matematyczne podstawy algorytmów genetycznych Techniki poprawiające efektywność algorytmów genetycznych Genetyczne systemy uczące się (GBML) Programowanie genetyczne Genetyczny dobór wag SSN

2 2 Algorytmy genetyczne - literatura John Holland, Adaptation in natural and artificial systems, The University of Michigan Press, 1975 David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1995 Jarosław Arabas, Wykłady z algorytmów ewolucyjnych, WNT, Warszawa 2001 Robert Schaefer, Podstawy genetycznej optymalizacji globalnej, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków 2002

3 3 Definicje Algorytmy genetyczne – algorytmy poszukiwania oparte na mechanizmach doboru naturalnego oraz łączenia cech rozwiązań Uczenie się systemu - każda autonomiczna zmiana w systemie zachodząca na podstawie doświadczeń, która prowadzi do poprawy jakości jego działania. Rodzaje uczenia: Z nauczycielem Z krytykiem Samoorganizacja

4 4 Cele badań nad algorytmami genetycznymi 1.Wyjaśnienie procesów adaptacyjnych występujących w przyrodzie 2.Zastosowanie w zadaniach optymalizacji i uczenia

5 5 Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich wszystkich możliwych problemach optymalizacyjnych jest taka sama Typowe algorytmy szukania (optymalizacji): metoda enumeracyjna (wyliczeniowa) szukanie gradientowe symulowane wyżarzanie strategie ewolucyjne algorytmy genetyczne metody wyspecjalizowane (wykorzystujące szczegółową wiedzę o problemie)

6 6 Terminy genetyczne i ich odpowiedniki w sztucznych systemach genetycznych fenotyprozwiązanie w postaci zbioru parametrów - x genotypzakodowana postać rozwiązania (fenotypu) chromosomciąg kodowy składający się z genów - cech allelwariant (wartość) cechy locuspozycja genu w chromosomie przystosowaniefunkcja f(x) przypisująca każdemu rozwiązaniu liczbę rzeczywistą odzwierciedlającą jego wartość

7 7 Terminy genetyczne - schemat gen x allel(gen x) = 1 zbiór alleli (gen x) = {0,1} locus(gen x) = 3 fenotyp: genotyp:

8 8 Standardowy algorytm genetyczny – ogólny schemat Generowanie populacji potomnej: Reprodukcja Krzyżowanie Mutacja Ocena populacji osobników Czy koniec ewolucji? Losowa generacja populacji osobników Koniec Start TakNie

9 9 Funkcje podstawowych operatorów genetycznych Reprodukcja – wybór najlepiej przystosowanych osobników (rozwiązań) do następnego pokolenia Krzyżowanie – szukanie rozwiązań zawierających cechy wielu dobrych rozwiązań Mutacja – dostarczanie nowego materiału genetycznego

10 10 Czynności związane z realizacją algorytmu genetycznego Wybór metody kodowania - reprezentacji fenotypu (rozwiązania) Wybór operatorów genetycznych w zależności od problemu i przyjętego sposobu kodowania Dobór wartości parametrów ewolucji

11 11 Typy reprodukcji Ruletkowa – proporcjonalna do wartości funkcji przystosowania - konieczność skalowania Rangowa – zależna od rangi – numeru na liście posortowanej względem przystosowania Turniejowa – wielokrotny wybór najlepszego osobnika z losowo wybieranej podpopulacji aż do skompletowania populacji potomnej

12 12 Reprodukcja ruletkowa Nr Ciąg kodowyPrzystosowanie% całości , , , ,9 Łącznie ,0 Przykład: optymalizacja funkcji Koło ruletki:

13 13 Metody wyznaczania prawdopodobieństwa reprodukcji: Liniowa: Potęgowa: gdzie: r(X) – ranga rozwiązania X, r max – ranga maksymalna, a,b,k – stałe spełniające warunki: Reprodukcja rangowa *

14 14 Wyznaczanie prawdopodobieństwa reprodukcji metodą liniową dla funkcji przystosowania Reprodukcja rangowa - przykład Nr Ciąg kodowyPrzystosowanieRanga r(X) p(X) dla k=2/3 i a= ,250, ,750, ,500,33 Łącznie11701,51,0 *

15 15 Typy krzyżowania - 1/2 Ze względu na sposób kojarzenia osobników: Kojarzenie losowe - jednakowe prawdopodobieństwo dla wszystkich par Kojarzenie krewniacze (endogamia) - wśród osobników pokrewnych Kojarzenie według linii - szczególnie wartościowy osobnik jest kojarzony ze wszystkimi członkami populacji Kojarzenie selektywne dodatnie - kojarzenie osobników podobnych np. w sensie odległości Hamminga Kojarzenie selektywnie ujemne - kojarzenie osobników niepodobnych *

16 16 Typy krzyżowania - 2/2 Ze względu na liczbę przecięć: Jednopunktowe Wielopunktowe Ze względu na liczbę osobników: Dwuosobnicze Wieloosobnicze W przypadku rzeczywistoliczbowej reprezentacji genotypu: Przez wymianę wartości genów Przez uśrednienie wartości genów *

17 17 Krzyżowanie proste - schemat

18 18 Symulacja algorytmu genetycznego optymalizującego funkcję f(x) = x 2

19 19 Metody kodowania Ze względu na typ wartości genu - allelu: Binarne np Całkowitoliczbowe O wartościach rzeczywistych (fenotypowe)

20 20 Kodowanie binarne Kodowanie pozycyjne: gdzie x - parametr rozwiązania, - element ciągu kodowego Kodowanie Graya: liczba kod pozycyjny kod Graya *

21 21 Kodowanie fenotypowe Wybrane operatory fenotypowe: - mutacja fenotypowa normalna: - krzyżowanie fenotypowe: - wektor parametrów fenotypu *

22 22 Metody kodowania Ze względu na sposób reprezentowania cech: Klasyczne - każda cecha fenotypu jest kodowana przez wartość odpowiedniego genu niezależnie od jego umiejscowienia Permutacyjne - cechy kodowane są przez pozycje genów (locus) Mieszane - cechy kodowane zarówno przez pozycje jak i umiejscowienie genów

23 23 Problem komiwojażera – przykład kodowania permutacyjnego Założenia: każde miasto jest przypisane do jednego z genów o kolejności odwiedzin każdego z miast decyduje jego umiejscowienie w ciągu kodowym Przykład: ciąg kodowy: rozwiązanie:

24 24 Metody kodowania - cd Ze względu na strukturę genotypu: Za pomocą ciągów Za pomocą innych struktur np. drzew, grafów, sieci

25 25 Dobór wartości parametrów algorytmu genetycznego Typy doboru: arbitralny – stałe wartości heurystyczny ewolucyjny Sposoby doboru ewolucyjnego ze względu na metodę reprezentowania parametrów: z podziałem na podpopulacje z parametrami zakodowanymi we wspólnym genotypie *

26 26 Algorytm z podziałem na podpopulacje podpopulacja 1 parametry AG-1 AG-1 podpopulacja 2 parametry AG-2 AG-2 podpopulacja K parametry AG-K AG-K... parametry zakodowane AG-1 parametry zakodowane AG-2 parametry zakodowane AG-K Meta - AG... *

27 27 Algorytm z podziałem na podpopulacje Założenia: 1.Algorytm działa dwufazowo: najpierw uruchamiane są algorytmy dla poszczególnych podpopulacji a następnie uruchamiany jest metaalgorytm (z reguły dużo rzadziej), którego osobnikami są zbiory parametrów algorytmów genetycznych 2.Poszczególne podpopulacje mogą być kopiowane lub usuwane w ramach reprodukcji dla metaalgorytmu *

28 28 Algorytm z parametrami zakodowanymi we wspólnym genotypie Przykładowy genotyp (jeden chromosom): Zakodowany fenotyp prawd. krzyżowania prawd. mutacji sposób kodowania informacja o dominowaniu *

29 29 Najlepsze osobniki w populacji przechodzą do następnego pokolenia bez jakichkolwiek zmian. Model elitarny zaleta - zachowanie najlepszych znanych rozwiązań wada - nadmierne skupienie populacji w obszarach wybranych rozwiązań

30 30 Zalety i wady algorytmów genetycznych Zalety: Odporność - unikanie ekstremów lokalnych, prawdopodobieństwo znalezienia dobrych rozwiązań jest w dużym stopniu niezależne od wyboru punktów początkowych Wydajność – duża liczba przetwarzanych schematów - ok. m 3, gdzie m - liczba osobników w populacji Łatwość zastosowania w niemal każdym zadaniu optymalizacji Wady: Brak gwarancji zbieżności do optymalnego rozwiązania

31 31 Metody poszukiwań - porównanie

32 32 Różnice pomiędzy algorytmami genetycznymi a tradycyjnymi metodami szukania Algorytmy genetyczne przetwarzają zakodowaną postać parametrów zadania (ciąg kodowy) a nie same parametry Poszukiwania prowadzone są w obrębie całej populacji rozwiązań (osobników) a nie pojedynczego rozwiązania Wykorzystywana jest tylko funkcja celu (uczenie z krytykiem) bez żadnej dodatkowej informacji naprowadzającej np. pochodnej funkcji celu Stosowane są probabilistyczne a nie deterministyczne reguły wyboru *

33 33 Schematy 1/5 Schemat (H) - ciąg złożony z symboli alfabetu ciągu kodowego i symbolu specjalnego -* reprezentującego dowolny symbol alfabetu ciągu kodowego W przypadku kodowania binarnego schemat składa się z symboli alfabetu V + ={0,1, *} Przykładowo ciąg kodowy jest reprezentantem schematu H=*11***0 o długości l =7 Gdy alfabet ciągu kodowego składa się z k symboli, można określić (k+1) l schematów. Rząd schematu o(H) - liczba pozycji ustalonych (zer i jedynek w przypadku binarnym), np. o(011*1**) = 4 Rozpiętość schematu (H) - odległość pomiędzy dwiema skrajnymi pozycjami ustalonymi, np. (011*1**) = 5-1 = 4 *

34 34 Schematy 2/5 Przyjmijmy standardowy algorytm genetyczny z kodowaniem binarnym, reprodukcją ruletkową, krzyżowaniem prostym losowym i losową mutacją jednopozycyjną Niech w chwili t w populacji znajduje się m(H,t) reprezentantów schematu H. Oczekiwana liczba schematów w populacji potomnej wyniesie wówczas: f(H) - średnie przystosowanie wszystkich ciągów reprezentujących schemat H w chwili t f i - przystosowanie i-tego ciągu w chwili t *

35 35 Załóżmy, że pewien schemat H przewyższa średnią o, gdzie c jest stałą. W efekcie otrzymujemy: Zaczynając natomiast od t=0 otrzymujemy: co świadczy o wykładniczym tempie rozprzestrzeniania się schematów o lepszym niż przeciętne przystosowaniu za sprawą samej reprodukcji. Schematy 3/5 *

36 36 Uwzględniając krzyżowanie i mutację otrzymujemy dolne oszacowanie oczekiwanej liczby schematów w pokoleniu potomnym: gdzie p c i p m oznaczają odpowiednio prawdopodobieństwa krzyżowania osobnika i mutacji genu Schematy 4/5 *

37 37 Wnioski: Krzyżowanie przyczynia się do niszczenia schematów o dużych rozpiętościach Schematy o wysokim przystosowaniu i małej rozpiętości rozprzestrzeniają się w wykładniczym tempie - hipoteza schematów-cegiełek mogących łączyć się w struktury o wysokim przystosowaniu Brak dobrych schematów może być przyczyną niestabilności procesu szukania, a w efekcie braku zbieżności do dobrych rozwiązań Schematy 5/5 *

38 38 Minimalny problem zwodniczy 1/3 Wybierzmy 4 schematy rzędu 2 o następujących średnich przystosowaniach: ***0*****0* f(00) ***0*****1* f(01) ***1*****0* f(10) ***1*****1* f(11) Załóżmy, że f(11) jest globalnym maksimum. Można wyróżnić dwa typy problemów zwodniczych: Typ 1: f(01)>f(00) i f(10) f(00) Typ 2: f(01)

39 39 Minimalny problem zwodniczy 2/3 Typ 1Typ 2 *

40 40 Minimalny problem zwodniczy 2/3 Typ 2 Jeśli w przypadku typu 2 f(00)+f(01) > f(10)+f(11), to proces szukania w zależności od początkowej liczności schematów może być rozbieżny (problem AG-trudny) *

41 41 Wady standardowego algorytmu genetycznego Niestabilność, brak zbieżności przy braku dobrych schematów Spadek różnorodności małej populacji w końcowej fazie ewolucji związana z tzw. dryfem genetycznym - odchylenia liczby osobników przy podobnych wartościach funkcji przystosowania Nieefektywność w przypadku niestacjonarności środowiska

42 42 Metody likwidowania ograniczeń standardowego algorytmu genetycznego OgraniczeniaMetody przezwyciężenia ograniczeń niestabilność, brak zbieżności przy braku dobrych schematów rekonfiguracja (zmiana położenia genów bez zmiany rozwiązania) przedwczesna zbieżnośćzwiększenie mutacji model ze ściskiem, mechanizm preselekcji, metody niszowe niestacjonarność środowiska diploidalność, poliploidalność, w pewnym stopniu metody zachowania różnorodności populacji (zapobiegania przedwczesnej zbieżności)

43 43 Rekonfiguracja - zmiana pozycji genów Założenia: Rekonfiguracja nie zmienia rozwiązania Konieczne jest dołączenie informacji o pozycjach poszczególnych genów w trakcie krzyżowania Jeśli parametry AG są kodowane we wspólnym genotypie to informację taką można reprezentować za pomocą dodatkowego chromosomu lub dołączyć bezpośrednio do ciągu kodowego kodującego fenotyp Jeśli informacja o pozycjach poszczególnych genów jest kodowana permutacyjnie to można ją poddać ewolucji stosując np. operację inwersji oraz krzyżowanie ciągów permutacyjnych metodą PMX, OX lub CX

44 44 Rekonfiguracja - zmiana pozycji genów Inwersja liniowa: Numerujemy geny w ciągu kodowym, wybieramy losowo 2 punkty przecięcia, obracamy środkowy fragment chromosomu. Przykład dla genów o wartościach binarnych: przed inwersją ^ ^ po inwersji postać genotypu: ciąg porządkowy g1 g2 g6 g5 g4 g3 g7 g8 - ciąg genów (kodowy)

45 45 Typy inwersji Ze względu na liczbę punktów przecięcia: Inwersja liniowa Inwersja liniowo-boczna: z prawdopodobieństwem 0,75 inwersja liniowa, z prawdopodobieństwem 0,125 inwersja boczna dla każdego z końców (zapobiega faworyzowaniu środkowej części chromosomu) Ze względu na wymóg homologiczności (zgodności pozycyjnej) chromosomów przy krzyżowaniu: Inwersja ciągła - niehomologiczne chromosomy w jednej populacji Inwersja masowa - dla każdego uporządkowania genów tworzona jest oddzielna podpopulacja

46 46 Metody kojarzenia ciągów kodowych przy inwersji Kojarzenie ściśle homologiczne (w przypadku wylosowania ciągów niehomologicznych krzyżowanie nie zachodzi) Kojarzenie na podstawie żywotności - w przypadku ciągów niehomologicznych do populacji potomnej wchodzą tylko ciągi o odpowiednio dużym zestawie genów Kojarzenie według wzorca - jeden z ciągów jest rekonfigurowany względem drugiego Kojarzenie według wzorca lepiej przystosowanego osobnika

47 47 ciąg 1 ciąg 2 pozycja: wartość: Po wybraniu wzorca ciągu 1, pozycje ciągu 2 muszą zostać dopasowane do ciągu 1: Teraz można dokonać krzyżowania w wybranym losowo punkcie: 1 1 1| | I przekonfigurować ciąg 2 do pierwotnej postaci: Kojarzenie według wzorca

48 48 Metody krzyżowania przy kodowaniu permutacyjnym PMX (partially matched crossover) OX (order crossover) CX (cycle crossover) Wszystkie z powyższych operacji pozwalają na zachowanie pełnego zestawu genów przy jednoczesnym krzyżowaniu i inwersji *

49 49 Metoda PMX Zamiana numerów pozycji na podstawie przyporządkowania numerów w środkowym fragmencie ciągu: A = | | B = | | A = | | B = | | Zamieniamy miejscami 5 i 2, 6 i 3 oraz 7 i 10 w obu ciągach *

50 50 Problem komiwojażera - kodowanie permutacyjne fenotypu Założenia: każde miasto jest przypisane do jednego z genów o kolejności odwiedzin każdego z miast decyduje jego umiejscowienie w ciągu kodowym Przykład: ciąg kodowy: rozwiązanie: *

51 51 Metoda PMX - problem komiwojażera Porównanie efektywności algorytmu z PMX z algorytmem wykorzystującym samą inwersję w ślepej wersji problemu komiwojażera: *

52 52 Zapobieganie przedwczesnej zbieżności Sposoby zapobiegania: Zwiększanie prawdopodobieństwa mutacji Mechanizm preselekcji Model ze ściskiem Metody niszowe Duża częstość mutacji często nie gwarantuje opuszczenia ekstremum lokalnego w przypadku ujednoliconej populacji Mechanizm preselekcji: w ramach reprodukcji osobniki potomne zastępują swoich rodziców (o ile są lepiej przystosowane) Model ze ściskiem: w ramach reprodukcji nowy osobnik zastępuje osobnika podobnego i słabo przystosowanego.

53 53 Model ze ściskiem Wersja Goldberga: Tworzymy populację mieszaną o współczynniku wymiany G: 0

54 54 Metody niszowe 1/6 Przykład funkcji wielomodalnej, o szczególnie szkodliwym wpływie przedwczesnej zbieżności spowodowanej ujednoliceniem populacji:

55 55 Metody niszowe 2/6 Problem 2-rękiego bandyty z podziałem wygranej - nagrody wypłacane są nie tylko w zależności od przystosowania ciągu (wybór odpowiedniego ramienia) ale również od liczby osobników o podobnym przystosowaniu Warunek równowagi: gdzie f - średnia wypłata do podziału, m - liczba osobników

56 56 Metody niszowe 3/6 Metody kreowania nisz i gatunków (specjacja): Ograniczenie migracji w sensie geograficznym np. model wyspowy lub komórkowy Zastosowanie funkcji współudziału (s) obniżającej wartość funkcji przystosowania gdy osobnik znajduje się blisko innych osobników z populacji: gdzie odległość d może być obliczana na poziomie genotypów (np. odległość Hamminga) lub fenotypów (rozwiązań), funkcja s() powinna maleć wraz z d, przy czym s(0) = 1

57 57 Metody niszowe 4/6 Przykład ilustrujący potrzebę stosowania barier reprodukcyjnych: Bariery reprodukcyjne: Kojarzenie według linii Kojarzenie krewniacze ze sporadycznym krzyżowaniem linii Wzorce skojarzeniowe (mating templates)

58 58 Metody niszowe 5/6 Wzorce skojarzeniowe – kojarzenie zachodzi tylko wtedy, gdy wzorzec pierwszego osobnika pasuje do części funkcjonalnej drugiego osobnika i/lub na odwrót przykład: : #10#:1010 #01#:1100 #00#:0000 wersja z wydzielonym identyfikatorem linii (do którego dopasowywany jest wzorzec): : : #10#:1010: #01#:1100: #00#:0000: *

59 59 Metody niszowe 6/6 Porównanie rozmieszczeń rozwiązań dla modów o równej i różnej wysokości:

60 60 Środowisko - typy Ze względu na element losowości (niezerowej wariancji) w funkcji oceny lub metody selekcji: Deterministyczne Niedeterministyczne Ze względu na zmienność oceny w funkcji czasu: Stacjonarne Niestacjonarne

61 61 Metody adaptacji do zmieniającego się środowiska 1.Utrzymanie różnorodności populacji - model ze ściskiem, niszowanie 2.Adoptowalna (lub bardziej elastyczna postać fenotypowa rozwiązań) 3.Wykorzystanie dodatkowych zmiennych lub struktur: Na poziomie populacji - zapisywanie najlepszych osobników w populacji lub całych populacji Na poziomie osobnika - diploidalność i dominowanie

62 62 Diploidalność i dominowanie 1/12 Diploidalność, poliploidalność - zdwojenie lub zwielokrotnienie (poliploidalność) liczby homologicznych chromosomów, reprezentujących fenotyp (rozwiązanie) Dominowanie - faworyzowanie wariantu dominującego w stosunku do wariantu recesywnego cechy podczas ekspresji Ekspresja - wybór wariantu cechy, który decyduje o postaci fenotypu

63 63 Przyjmijmy, że podczas ekspresji 2 warianty recesywne dają wariant recesywny (mała litera), a w pozostałych przypadkach otrzymujemy wariant dominujący (duża litera): aa a, aA A, Aa A, AA A, wówczas operacja ekspresji homologicznych chromosomów wygląda następująco: AbCDe ABCDe aBCde Diploidalność i dominowanie 2/12

64 64 Diploidalność i dominowanie 3/12 Mechanizm dominowania: Stały (np. model diploidalny prosty) Adaptacyjny - podlegający ewolucji Metody reprezentowania informacji o dominowaniu: Trzeci chromosom – wzorzec dominacji Dodatkowy pole genu (obok allelu) Informacja wbudowana w strukturę chromosomu np. poprzez rozszerzenie alfabetu np. model trialleliczny

65 65 Diploidalność i dominowanie 4/12 Przyjmując binarną reprezentację genotypu i następujące oznaczenia: 0 d - zero dominujące, 0 r - zero recesywne, 1 d - jedynka dominująca i 1 r - jedynka recesywna, otrzymujemy tablicę ekspresji alleli: 11-11d1d 110-1r1r -0000d0d 1-000r0r 1d1d 1r1r 0d0d 0r0r allele chromosomu A allele chromosomu B

66 66 Diploidalność i dominowanie 5/12 Metody rozwiązywania konfliktów: Losowanie wariantu genu Wybór według następnego genu Wybór arbitralny np. w modelu triallelicznym Hollstiena - Hollanda: 0 oznacza zero dominujące, 1 - jedynka recesywna, 2 - jedynka dominująca allele chromosomu B allele chromosomu A Przykład ekspresji: A: B:

67 67 Analiza matematyczna Dolne oszacowanie liczby schematów w pokoleniu potomnym: gdzie H e - schemat ujawniony. Średni wskaźnik przystosowania dla schematu całkowicie dominującego: Oczekiwany średni wskaźnik dla schematu zdominowanego: Stąd wniosek, że dzięki przysłanianiu, liczność schematu H w następnym pokoleniu jest z reguły wyższa, niż by to wynikało z jego rzeczywistego przystosowania Diploidalność i dominowanie 6/12 *

68 68 Przykład krzyżowania w modelu diploidalnym: Diploidalność i dominowanie 7/12 chromosom A chromosom B chromosom A chromosom B gameta 1A gameta 1B gameta 2A gameta 2B gameta 1A gameta 2A gameta 1B gameta 2B rodzic 1 rodzic 2 potomek 1 potomek 2 krzyżowanie chromosomów homologicznych wymiana gamet

69 69 Przykład krzyżowania (wariant II): Diploidalność i dominowanie 8/12 chromosom A chromosom B chromosom A chromosom B gameta 1A gameta 1B gameta 2A gameta 2B gameta 1A gameta 2B gameta 2A gameta 1B rodzic 1 rodzic 2 potomek 1 potomek 2 krzyżowanie chromosomów homologicznych wymiana gamet

70 70 Symulacja - niestacjonarna wersja zagadnienia plecakowego (Godberg i Smith, 1987):, gdzie pod warunkiem, że Warunek więzów zmienia się skokowo co pewien okres czasu, a następnie powraca do postaci pierwotnej. Diploidalność i dominowanie 9/12 *

71 71 Symulacja - niestacjonarna wersja zagadnienia plecakowego - porównanie średnich wartości rozwiązań dla różnych modeli haploidalnego i diploidalnego prostego (ze stałym wzorcem dominacji): Diploidalność i dominowanie 10/12 *

72 72 Symulacja - niestacjonarna wersja zagadnienia plecakowego - porównanie średnich wartości rozwiązań dla modeli diploidalnego prostego i triallelicznego: Diploidalność i dominowanie 11/12 *

73 73 Symulacja - niestacjonarna wersja zagadnienia plecakowego - porównanie najlepszych rozwiązań w pokoleniu dla modeli diploidalnego prostego i triallelicznego: Diploidalność i dominowanie 12/12 *

74 74 Programowanie genetyczne GP - (genetic programming) Projektowanie GP: wybór alfabetu (np. funkcje logiczne, arytmetyczne, statystyczne, instrukcje i bloki danych) wybór struktury (np. drzewo, graf, automat skończony) wybór operatorów krzyżowania i mutacji wybór operatora enkapsulacji *

75 75 Programowanie genetyczne - kodowanie funkcji w postaci symbolicznej *

76 76 Programowanie genetyczne - krzyżowanie *

77 77 Programowanie genetyczne - enkapsulacja *


Pobierz ppt "1 Algorytmy genetyczne - plan wykładu Wstęp Standardowy algorytm genetyczny Matematyczne podstawy algorytmów genetycznych Techniki poprawiające efektywność"

Podobne prezentacje


Reklamy Google