Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałJulianna Semenowicz Został zmieniony 10 lat temu
1
Zastosowanie osi symetrii i wielokątów w przyrodzie
Jakub Kubiak kl. Vc Zastosowanie osi symetrii i wielokątów w przyrodzie
2
Osie symetrii Symetria, własność obiektu ze względu na różnego rodzaju przekształcenia (np. przekształcenia geometryczne). Najprostszymi symetriami geometrycznymi są: symetria względem punktu (symetria środkowa), symetria względem prostej (symetria osiowa) i symetria względem płaszczyzny (symetria płaszczyznowa). Ciało zachowuje symetrię środkową względem punktu O (tzw. środka symetrii), jeśli dla każdego punktu M należącego do ciała istnieje taki punkt M' ≠ M należący również do tego ciała, że punkty M, O i M' należą do jednej prostej, oraz OM = OM'. Ciało zachowuje symetrię osiową względem prostej m (tzw. osi symetrii), gdy dla każdego punktu M należącego do ciała istnieje taki punkt M' ≠ M należący również do tego ciała, że odległości M i M' od prostej m są sobie równe.
3
Rodzje symetrii Symetria środkowa Symetria osiowa
Symetria płaszczyznowa
4
Symetria środkowa Symetrią środkową względem punktu O zwanego środkiem symetrii nazywamy przekształcenie płaszczyzny, w którym punkt O jest stały, a każdemu innemu punktowi A przyporządkowuje punkt A' taki, że punkt O jest środkiem odcinkaAA'.
5
Symetria osiowa Symetrią osiową względem prostej k nazywamy przekształcenie płaszczyzny, w którym każdemu punktowi Aprzyporządkowany jest punkt A', leżący na prostej prostopadłej do tej prostej k przechodzącej przez punkt A w tej samej odległości od k co punkt A, ale po drugiej stronie prostej k. Prostą k nazywamy osią symetrii.
6
Symetria płaszczyznowa
Symetria płaszczyznowa względem płaszczyzny P - odwzorowanie geometryczne przestrzeni przyporządkowujące każdemu punktowi A tej przestrzeni punkt A’ taki, że punkty A i A’ leżą na prostej prostopadłej do P, w równych odległościach od płaszczyzny P i po jej przeciwnych stronach .
7
Przykłady zastosowania symetrii w przyrodzie
8
Symetria u zwierząt
9
Wielokąty w przyrodzie
Parkietaż, kafelkowanie lub tesselacja – pokrycie płaszczyzny wielokątami przylegającymi i nie zachodzącymi na siebie. Można rozpatrywać parkietaże części płaszczyzny oraz powierzchni, które nie są płaskie (np. parkietaże sfery). Można także badać parkietaże przestrzeni trójwymiarowej i przestrzeni wymiarów wyższych. Nie jest konieczne ograniczanie się do przestrzeni euklidesowych. W praktyce na elementy parkietażu nie muszą być wielokątami.
10
Przykłady parkietażu
11
Pięciokątne rośliny
12
Dziękuję za uwagę
13
Źródła
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.