Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
1
Nie taka matma straszna ;-)
2
Zagadka 2 Mamy 9 jednakowych monet, ale jedna spośród nich jest fałszywa, gdyż ma inną wagę od pozostałych. Ludzkie ręce jednak nie są w stanie wyczuć, która to z nich i czy fałszywa moneta jest lżejsza czy cięższa. Jak w trzech ważeniach, za pomocą zwykłej wagi szalkowej (bez żadnych odważników), wyłonić fałszywą monetę? Czy jest ona cięższa czy lżejsza?
3
Mamy dziewięć monet. Dla porządku ponumerujmy je od 1 do 9 (numerki nie będą miały znaczenia w całym rozwiązaniu, ale pomogą nam się nie pogubić). W każdym wypadku mamy co najwyżej 3 ważenia. Musimy z 9 monet wybrać jedną, tą, która jest inna – lżejsza lub cięższa.
4
(Aby przejść dalej, należy kliknąć na odpowiednią strzałkę)
Ważenie I 1+2+3=4+5+6 Waga jest w równowadze, 1,2,3,4,5,6 - prawdziwe 1+2+3≠4+5+6 Waga nie jest w równowadze, 7,8,9 - prawdziwe (Aby przejść dalej, należy kliknąć na odpowiednią strzałkę)
5
Ważenie II 7=8 Waga jest w równowadze, 9 jest fałszywa
7≠8 Waga nie jest w równowadze, 9 jest prawdziwa
6
Sprawdzamy, czy 9 jest lżejsza czy cięższa.
Ważenie III Sprawdzamy, czy 9 jest lżejsza czy cięższa. 9 > 1 Fałszywa 9 jest cięższa 9 < 1 Fałszywa 9 jest lżejsza Zakończenie
7
W takiej sytuacji są dwie opcje:
7 > 8 7 < 8
8
Ważenie III 7 > 1 Fałszywa jest 7, jest cięższa 7 = 1
Fałszywa jest 8, jest lżejsza Zakończenie
9
Ważenie III 7 < 1 Fałszywa jest 7, jest lżejsza 7 = 1
Fałszywa jest 8, jest cięższa Zakończenie
10
W takiej sytuacji są dwie opcje:
1+2+3 > 4+5+6 1+2+3 < 4+5+6
11
Ważenie II 1+2+3 > 7+8+9 1+2+3 = 7+8+9
Któraś z monet: 4,5,6 jest fałszywa i jest lżejsza 1+2+3 > 7+8+9 Któraś z monet: 1,2,3 jest fałszywa i jest cięższa
12
Fałszywa jest 6, jest lżejsza
Ważenie III 4 > 5 Fałszywa jest 5, jest lżejsza 4 < 5 Fałszywa jest 4, jest lżejsza 4 = 5 Fałszywa jest 6, jest lżejsza Zakończenie
13
Fałszywa jest 3, jest cięższa
Ważenie III 1 < 2 Fałszywa jest 2, jest cięższa 1 > 2 Fałszywa jest 1, jest cięższa 1 = 2 Fałszywa jest 3, jest cięższa Zakończenie
14
Ważenie II 1+2+3 < 7+8+9 1+2+3 = 7+8+9
Któraś z monet: 4,5,6 jest fałszywa i jest cięższa 1+2+3 < 7+8+9 Któraś z monet: 1,2,3 jest fałszywa i jest lżejsza
15
Fałszywa jest 6, jest cięższa
Ważenie III 4 > 5 Fałszywa jest 4, jest cięższa 4 < 5 Fałszywa jest 5, jest cięższa 4 = 5 Fałszywa jest 6, jest cięższa Zakończenie
16
Fałszywa jest 3, jest lżejsza
Ważenie III 1 < 2 Fałszywa jest 1, jest lżejsza 1 > 2 Fałszywa jest 2, jest lżejsza 1 = 2 Fałszywa jest 3, jest lżejsza Zakończenie
17
Zakończenie Jak widać, jest możliwe wyłonienie spośród 9 identycznych monet jednej fałszywej (lżejszej lub cięższej) przy 3 ważeniach. Pokazany sposób nie jest jedynym możliwym. Nasza klasa wymyśliła jeszcze drugi, jednak o wiele bardziej skomplikowany. Jak na to wpadliśmy?
18
Teraz wystarczy tylko odrobinkę pomyśleć.
Sposób Przy pierwszym ważeniu musimy podzielić monety na kupki po 3, gdyż inaczej (po jednej, dwóch czy czterech) ważenia będą nieskuteczne. Przy drugim ważeniu można ważyć po trzy lub po dwie monety, w zależności od potrzeb. Trzecie ważenie, ponieważ ma już dokładnie wskazać, która moneta jest fałszywa, musi być wykonane po jednej monecie. Teraz wystarczy tylko odrobinkę pomyśleć.
19
Autorzy: Klasa IIIf Gimnazjum nr 1 W Zielonej Górze
Ul. Wyszyńskiego 101 Zielona Góra
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.