Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.

Slides:



Advertisements
Podobne prezentacje
Metody badania stabilności Lapunowa
Advertisements

Dynamika bryły sztywnej
Systemy stacjonarne i niestacjonarne (Time-invariant and Time-varing systems) Mówimy, że system jest stacjonarny, jeżeli dowolne przesunięcie czasu  dla.
Metody Sztucznej Inteligencji 2012/2013Zastosowania systemów rozmytych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Zastosowania.
Sieć jednokierunkowa wielowarstwowa
Systemy/modele rozmyte – podstawy i struktury
Hydraulika SW – modele elementów i systemu
Modele hydrauliki elementów SW
Modele systemu wodociągowego ciśnieniowego
Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model.
Czy potrafimy obliczyć wartość wyjścia sieci znając wartości jej wejść? Tak, przy założeniu, że znamy aktualne wartości wag i progów dla poszczególnych.
Etapy modelowania matematycznego
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Komputerowe wspomaganie decyzji 2010/2011Wprowadzenie – mapa pojęć Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Określenie.
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Model Takagi – Sugeno – Kang’a - TSK
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły;
Nieliniowa metoda najmniejszych kwadratów
Problem transportowy. Transport towarów od dostawców (producentów) do odbiorców odbywa się dwustopniowo przez magazyny hurtowe z przeładunkiem na mniejsze.
Systemy dynamiczne – przykłady modeli fenomenologicznych
Liniowe modele decyzyjne – rozwiązania i analiza post-optymalizacyjna
Stabilność Stabilność to jedna z najważniejszych właściwości systemów dynamicznych W większości przypadków, stabilność jest warunkiem koniecznym praktycznego.
Modelowanie matematyczne
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów regulacji.
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Systemy dynamiczne – przykłady modeli fenomenologicznych
Metody Lapunowa badania stabilności
Systemy/modele rozmyte – podstawy i struktury
Semestr letni roku akademickiego 2013/2014
Obserwatory zredukowane
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Teoria sterowania SN 2013/2014Organizacja prowadzenia i program przedmiotu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2012/2013Organizacja prowadzenia i program przedmiotu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Wydział
Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Cechy modeli obiektów dynamicznych z przedstawionych przykładów:
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
Wybrane modele rozmyte i schematy wnioskowania
Modelowanie i podstawy identyfikacji 2012/2013Schematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii.
Modelowanie i podstawy identyfikacji 2012/2013Organizacja prowadzenia i program przedmiotu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów.
Określenie zakresu przedmiotu
Podstawy modelowania i identyfikacji 2011/2012Organizacja prowadzenia i program przedmiotu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów.
Struktury i algorytmy wspomagania decyzji 2013/2014Organizacja prowadzenia i program przedmiotu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii.
Wybrane zadania automatyka, w których stosuje on modele:
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Podstawy modelowania i identyfikacji 2011/2012Modele fenomenologiczne - metodyka Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Systemy/modele rozmyte – podstawy i struktury
Etapy modelowania matematycznego
Teoria sterowania 2011/2012Organizacja prowadzenia i program przedmiotu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Wydział
Struktury i algorytmy wspomagania decyzji 2012/2013Organizacja prowadzenia i program przedmiotu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii.
Modelowanie i identyfikacja 2012/2013Organizacja prowadzenia i program przedmiotu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Sterowanie – metody alokacji biegunów
Sterowanie – metody alokacji biegunów
Teoria sterowania 2013/2014Sterowanie – obserwatory zredukowane II  Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Obserwatory.
Modele dyskretne – dyskretna aproksymacja modeli ciągłych lub
Przykład 1: obiekt - czwórnik RC
Systemy dynamiczne 2014/2015Odpowiedzi – systemy liniowe stacjonarne  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System.
Modelowanie i podstawy identyfikacji 2014/2015Organizacja prowadzenia i program przedmiotu  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów.
Wybrane zadania automatyka, w których stosuje on modele:
Przykład 5: obiekt – silnik obcowzbudny prądu stałego
Teoria sterowania SN 2014/2015Organizacja prowadzenia i program przedmiotu  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania SNUpraszczanie schematów blokowych transmitancyjnych – znajdowanie transmitancji zastępczej  Kazimierz Duzinkiewicz, dr hab. inż.Katedra.
Podstawy automatyki I Wykład 3b /2016
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Podstawy automatyki I Wykład /2016
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Zapis prezentacji:

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Linearyzacja Modele liniowe powstają też w wyniku linearyzacji nieliniowych modeli przestrzeni stanu w otoczeniu tzw. trajektorii nominalnej Weźmy nieliniowy niestacjonarny model przestrzeni stanu - równanie stanu - równanie wyjścia gdzie - stan - wejście - wyjście - funkcje różniczkowalne w sposób ciągły względem swoich argumentów

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania2 Trajektorię nominalną określa się w następujący sposób: Definicja trajektorii nominalnej: Dla nominalnego sygnału wejścia nominalna trajektoria stanu spełnia równanie stanu i nominalna trajektoria wyjścia spełnia równanie wyjścia Jeżeli nominalna trajektoria wejścia jest stała trajektoria stanu jest stanem równowagi, który spełnia równanie dla wszystkich

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania3 Odchylenia stanu ( w tym stanu początkowego), wejścia i wyjścia od ich trajektorii nominalnych oznaczymy Korzystając z powyższych oznaczeń – równanie stanu Rozwijamy funkcję w szereg Taylora w otoczeniu wartości nominalnych

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania4 Z definicji trajektorii nominalnej stanu i zakładając, że warunki zaniedbania reszty z wyrazów wyższych rzędów są spełnione Zlinearyzowane równanie stanu

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania5

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania6 Zlinearyzowane równanie stanu

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania7 Podobnie dla równania wyjścia Rozwijamy funkcję w szereg Taylora w otoczeniu wartości nominalnych

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania8 Z definicji trajektorii nominalnej wyjścia i zakładając, że warunki zaniedbania reszty z wyrazów wyższych rzędów są spełnione Zlinearyzowane równanie wyjścia

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania9

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania10 Zlinearyzowane równanie wyjścia

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania11 Przykład Ruch kulki toczącej się w wyżłobionej belce (patrz rysunek) opisywany jest równaniami Zmienne - położenie kulki (wyjście) - kąt pochylenia belki (wyjście) - przyłożony moment obrotowy (wejście) Parametry - przyśpieszenie ziemskie - moment bezwładności belki - masa kulki - promień kulki - moment bezwładności kulki

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania12 Definiujemy zmienne stanu Wejście Wyjście Równania stanu gdzie

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania13 Równanie wyjścia Interesuje nas sterowanie w sytuacji: belka w położeniu ustalonym poziomym i kulka poruszająca się ruchem jednostajnym. Przyjmując, że obserwację rozpoczynamy w chwili t 0, położenie początkowe wynosi p 0, zaś prędkość ruchu jednostajnego v 0, możemy napisać

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania14 Podstawmy te ustalenia do równań stanu

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania15 Dla przyjętej trajektorii stanu, aby spełniała ona wymagania definicji trajektorii nominalnej czyli Podsumowanie: Nominalna trajektoria wejścia Nominalna trajektoria stanu Nominalna trajektoria wyjścia

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania16 Definiujemy zmienne przyrostowe w otoczeniu trajektorii nominalnych - stanu - wejścia - wyjścia

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania17 Funkcje f(x(t), u(t)) i h(x(t), u(t))

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania18 Jakobiany

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania19

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania20

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania21

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania22

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania23 Wartości jakobianów na trajektoriach nominalnych

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania24

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania25

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania26 Model nieliniowy Model zlinearyzowany w otoczeniu trajektorii nominalnych

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania27

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania28 Model szczególny trajektorii nominalnych – stała trajektoria wejścia, trajektoria stanu = stan równowagi Sprawdzić czy jest to stan równowagi!

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania29 Model zlinearyzowany w otoczeniu stanu równowagi

Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania30