Dane INFORMACYJNE (do uzupełnienia)

Slides:



Advertisements
Podobne prezentacje
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum w Brzezinach ID grupy: 98/72
Advertisements

Płyny Płyn to substancja zdolna do przepływu.
Dane INFORMACYJNE (do uzupełnienia)
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Dane Informacyjne: Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH NR 1 „ELEKTRYK” W NOWEJ SOLI ID grupy: 97/56_MF_G1 Kompetencja: MATEMATYKA I FIZYKA Temat.
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
„Zbiory, relacje, funkcje”
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Nazwa szkoły: Publiczne Gimnazjum im. Książąt Pomorza Zachodniego w Trzebiatowie ID grupy: 98/46_MF_G1 Kompetencja: Zajęcia projektowe, komp. Mat.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum w Polanowie im. Noblistów Polskich ID grupy: 98/49_MF_G1 Kompetencja: Fizyka i matematyka Temat.
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół w Lipinkach Łużyckich
DANE INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH IM J. MARCIŃCA W KOŹMINIE WLKP. ID grupy: 97/93_MF_G1 Opiekun: MGR MARZENA KRAWCZYK Kompetencja:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Zespół Szkół w Mosinie 98/67_MF_G2 Kompetencja:
GIMNAZJUM IM. MIESZKA I W CEDYNI MATEMATYCZNO - FIZYCZNA
ZROZUMIEĆ RUCH Dane INFORMACYJNE Międzyszkolna Grupa Projektowa
Dane INFORMACYJNE Nazwa szkoły:
1.
Dane informacyjene Nazwa szkoły ID grupy Kompetencja Temat projektowy
pod opieką Pani Moniki Klimczak
Nazwa szkoły: Gimnazjum nr 58 im. Jana Nowaka Jeziorańskiego w Poznaniu ID grupy: 98/62_MF_G2 Opiekun Aneta Waszkowiak Kompetencja: matematyczno- fizyczna.
Gęstość to stosunek masy do objętości
Dane INFORMACYJNE (do uzupełnienia)
1.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE Nazwa szkoły: PUBLICZNE GIMNAZJUM w CZŁOPIE
DANE INFORMACYJNE Nazwa szkoły: GIMNAZJUM W WIERZBNIE
Spis treści 1. Dane informacyjne 2. Co to jest gęstość? 3. Przyrządy do mierzenia gęstości 4. Układ SI 5. Archimedes 6. Prawo Archimedesa 7. Zadanie z.
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum w Manowie ID grupy:
Nazwa szkoły: Gimnazjum nr 58 im. Jana Nowaka Jeziorańskiego w Poznaniu ID grupy: 98/62_MF_G2 Opiekun Aneta Waszkowiak Kompetencja: matematyczno- fizyczna.
Hałas wokół nas Dane INFORMACYJNE Nazwa szkoły:
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Prezentacja jest dystrybuowana bezpłatnie
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane informacyjne: Nazwa szkoły: Gimnazjum w Wierzbnie
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Temat: Gęstość materii Definicja: Gęstość (masa właściwa)- jest to stosunek masy pewnej porcji substancji do zajmowanej przez nią objętości.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Ogólnokształcących GIMNAZJUM w Knyszynie ID grupy: 96/91_MP_G2 Kompetencja: matematyczno - przyrodnicza Temat.
Nazwa szkoły: Zespół Szkół w Lichnowach ID grupy: 96/70_MP_G1 Kompetencja: Matematyczno-przyrodnicza Temat projektowy: Budowa cząsteczkowa materii Semestr/rok.
Program Operacyjny kapitał Ludzki
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły:
Projekt „ROZWÓJ PRZEZ KOMPETENCJE” jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny.
Cele projektu: kształcenie umiejętności korzystania z różnych źródeł informacji, gromadzenie, selekcjonowanie i przetwarzanie.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Spis treści 1. Dane informacyjne 2. Co to jest gęstość substancji? 3. Przyrządy do mierzenia gęstości 4. Układ SI 5. Zadanie z gęstością 6. Zdjęcia z wycieczki.
DANE INFORMACYJNE (DO UZUPEŁNIENIA)
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane Informacyjne Nazwa szkoły:
Program Operacyjny kapitał Ludzki CZŁOWIEK - NAJLEPSZA INWESTYCJA Projekt,, Z FIZYKĄ, MATEMATYKĄ I PRZEDSIĘBIORCZOŚCIĄ ZDOBYWAMY ŚWIAT!!!” jest.
Termodynamika II klasa Gimnazjum nr 2
Przygotowanie do egzaminu gimnazjalnego
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum w Lichnowach ID grupy:
Projekt „ROZWÓJ PRZEZ KOMPETENCJE” jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
DANE INFORMACYJNE Cisnienie hydrostatyczne i atmosferyczne
1.
Zapis prezentacji:

Dane INFORMACYJNE (do uzupełnienia) Nazwa szkoły: Gimnazjum Nr 58 im. Jana Nowaka Jeziorańskiego ID grupy: 98/62_MF_G2 Kompetencja: ………Mat.-Fiz………………………………………….. Temat projektowy: …………Gęstość materii……………………………………….. Semestr/rok szkolny: semestr 2 ; 2009/2010

Definicje Masa to ilość materii w danym ciele. Oznaczamy ją jako m. Jednostką masy w SI jest kilogram, a inne jednostki to, np. funt, uncja. Ciężar to siła jaką ciało (np. Ziemia) przyciąga drugie ciało. Oznaczamy go jako F. Objętość to przestrzeń, którą zajmuje ciało. Oznaczamy ją jako V. Jednostką objętości jest m³ Materia to wszystko co posiada masę i objętość.

Gęstość Gęstość to stosunek masy ciała do jego objętości. Oznaczamy ją jako ρ. Jednostką gęstości w SI jest kg/m³, a inną często używaną jednostką jest g/cm³. Wzór na gęstość to

Pomiar objętości ciała W przypadku cieczy postępuje się tak samo tylko wlewa się ją do pustej menzurki.

Przykładowe gęstości ciał UWAGA! Gęstość większości substancji jest zależna od panujących warunków, w szczególności od temperatury i ciśnienia. Gęstości ciał podaje się w warunkach standardowych (czyli T=20oC, p=1013hPa) Substancja g/cm³ Woda 1,00 Cukier 1,59 Lód (0C) 0,92 Ołów 11,40 Sól kamienna 2,16 Srebro 10,80 Złoto 19,30 Żelazo 7,90 Aluminium 2,70 Rtęć 13,50 Oliwa Wodór 0,09

Przeliczanie jednostek Ważną rzeczą w poprawnym obliczaniu zadań jest zamiana jednostek. Jak je zamieniać pokażemy na poniższym zadaniu. 15g/cm³ zamień na kg/m³ 1cm3 = 0,000001 m3 1g = 0,001 kg 4. Wykonujemy działanie i otrzymujemy wynik 34 x 0,001kg : 0,000001m3 = 34000 kg/m3 15 x 0,001kg : 0,000001m3 = 15000 kg/m3 7

Przeliczanie jednostek Kolejne zadanie Jeśli gęstość złota wnosi 19.3 g/cm3, to oblicz ile będzie ważył 1m3 tego kruszcu? Odpowiedź podaj w kg . SZUKANE: m=? DANE: ρ – 19.3 g/cm3 ROZWIĄZANIE: 1m3 = 100 cm x 100 cm x 100 cm =1000000 cm3 19.3 g/cm3 x 1000000 cm3 = 19300000 g 19300000 g = 19300 kg

Zadania ρ złota 19.3 g/cm3 ρ platyny 21.4 g/cm3 Jaką masę ma 1dm3 stopu złota ( 19.3 g/cm3 ) i platyny ( 21.4 g/cm3 ), jeśli proporcje składników wynoszą złoto 80%, a platyna 20%? SZUKANE: m = ? DANE: ρ złota 19.3 g/cm3 ρ platyny 21.4 g/cm3 złoto 80% platyna 20% ROZWIĄZANIE: 1dm3 = 10 cm x 10 cm x 10 cm =1000 cm3 1000 cm3 x 0.8 = 800 cm3 1000 cm3 x 0.2 = 200 cm3 800 cm3 x 19.3 g/cm3 = 15440 g = 15.44 kg 200 cm3 x 21.4 g/cm3 = 4280 g = 4.28 kg Odp. 1 dm3 stopu ma masę 19.72 kg .

Zadania Jakie wymiary ma sześcienny blok złota (19.3 g/cm3 ) o wadze 1 tony? SZUKANE: a = ? WZÓR: a = DANE: ρ – 19.3 g/cm3 ROZWIĄZANIE: 1 T = 1000000 g a = Odp. Blok złota ma wymiary 37.3 cm x 37.3 cm x 37.3 cm .

Zadania Jak odmierzyć 23g oliwy, mając do dyspozycji tylko menzurkę? DANE: SZUKANE: WZÓR: m=23g, V = ? V = m/ρ ρ=0,92g/cm3 ROZWIĄZANIE: V=23g/0,92g/cm3 = 25cm3 Odp. Do menzurki należy wlać 25cm3 oliwy.

Początek Wszechświata – Wielki wybuch Na początku cała materia Wszechświata była skupiona w jednym punkcie. Podczas Wielkiego Wybuchu z energii kreowały się cząstki i antycząstki. Od tego momentu możemy mówić o przestrzeni, masie i objętości. Wszechświat zmienia się w każdej sekundzie i dlatego jest układem dynamicznym.

Ziemia Średnia - 5,515 g/cm³ Skorupa - 2,5 g/cm³ Płaszcz - 4,0 g/cm³ Jądro – 12,5 g/cm³ W astronomii podaje się najczęściej gęstość średnią, ale można rozróżnić też gęstość poszczególnych warstw. Zilustrujemy to na przykładzie Ziemi. Jak widać gęstość rośnie wraz z głębokością znajdowania się warstw. Można wywnioskować, że gęstość warstw nie zależy tylko od składu, ale również od ciśnienia.

Gęstości planet w układzie Słonecznym Gazowe olbrzymy jak sama nazwa wskazuje składają się głównie z gazów więc mają mniejszą gęstość od planet ziemiopodobnych, których powierzchnia jest skalista. Potwierdza to tabela poniżej. Gazowe olbrzymy Jowisz – 1,33 g/cm³ Saturn – 0,71 g/cm³ Uran – 1,16 g/cm³ Neptun – 1,77 g/cm³ Planety ziemiopodobne Merkury – 5,50 g/cm³ Wenus – 5,11 g/cm³ Ziemia – 5,52 g/cm³ Mars – 3,94 g/cm³

Średnia gęstość we Wszechświecie Cały Wszechświat składa się z ogromnej liczby gwiazd, planet i innych obiektów. Mają one różne gęstości. Od ekstremalnie dużych do bardzo małych. Wielkie odległości między nimi powodują, że średnia gęstość Wszechświata jest bardzo mała. Wynosi ona 9,24 x kg/m³.To tak, jakby w jednym metrze sześciennym znajdowałoby się 5 neutronów.

Słońce Jedną z gwiazd która teraz jest w ciągu głównym jest gwiazda najbliższa Ziemi czyli Słońce. Jej obecna średnia gęstość to 1,41 g/cm³, ale podczas dalszej ewolucji gęstość będzie się zmieniać. Stopniowo Słońce będzie rosło (gęstość będzie malała). Potem odrzuci zewnętrzne warstwy, zapadnie się pod własnym ciężarem i stanie się białym karłem (gęstość ok. g/cm³).

Dlaczego statki o dużej masie nie toną? Sprawa jest prosta. W statku są puste przestrzenie które wypełnia powietrze więc średnia gęstość statku jest mniejsza od gęstości wody.

Prawo Archimedesa (Siła wyporu) Na każde ciało zanurzone w cieczy działa siła wyporu skierowana ku górze i równa jest ciężarowi cieczy, wypartej przez to Ciało. Fw Fc

V statku=V wypartej wody Fc statku<Fc wypartej wody Statki Metal ma większą gęstość od wody ale powietrze mniejszą więc średnia gęstość statku jest mniejsza od gęstości wody więc: ρ statku< ρ wody V statku=V wypartej wody m = ρ x V Fc= m x g Fw= Fc wypartej wody Fc statku<Fc wypartej wody Fc statku<Fw ρ - gęstość V- objętość m- masa g- przyciąganie Ziemskie (10N/1kg) Fc- siła ciężkości Fw- siła wyporu

Gazy Prawo Archimedesa tyczy się także gazów, co jest wykorzystywane przez ludzi w np. sterowcach, balonach dmuchanych „normalnie” i helem oraz w balonach do latania. Omówimy to w następnych slajdach.

Balony (do latania) Dlaczego, gdy w koszu od balonu umieszczony jest działający palnik, balon leci do góry? Zwiększając temperaturę powietrza zwiększamy jego objętość więc gęstość powietrza się zmniejsza, a ρ całego balonu ma mniejszą wartość od ρ powietrza.

Balony (do dmuchania) Hel ma mniejszą gęstość od normalnego powietrza więc balon z helem unosi się. Normalnie dmuchane balony nie unoszą się, ponieważ gaz jakim są wypełnione, ma większą gęstość od powietrza – jest to dwutlenek węgla wydychany z płuc.

Sterowce Sterowce były wpierw wypełniane wodorem który jest gazem o najmniejszej gęstości więc mogły ze spokojem latać, jednak wodór jest zbyt wybuchowy więc zmieniono go na hel który jest niepalny.

Podsumowanie siły wyporu Jeśli mamy ciało i chcemy sprawdzić czy będzie pływać możemy porównać gęstości. Jeśli chodzi o gazy trzeba pamiętać o wysokości na jakiej dane ciało ma latać, a poza tym trzeba jeszcze pamiętać o wietrze i o temperaturze na danej wysokości.

Doświadczenie Zaistniała sytuacja Przed włożeniem do cieczy kule były w równowadze. Dlaczego teraz nie są?

Doświadczenie Całość wygląda tak: Fw1<Fc1 Fw2<Fc2 ale ciecz pierwsza ma mniejszą gęstość ciało w niej zanurzone jest niżej gdyż Fc1-Fw1> Fc2-Fw2 Odp. Ciecz w 1 zlewce ma mniejszą gęstość.

Dyfuzja Dyfuzja jest to zjawisko samorzutnego mieszania się różnych substancji. Dyfuzja świadczy o cząsteczkowej budowie materii i nieustannym ruchu cząstek. Szybkość dyfuzji zależy od szybkości cząsteczek, czyli od temperatury substancji.

Doświadczenie To doświadczenie udowadnia, że w cieplejszej wodzie dyfuzja zachodzi szybciej. Zimna woda Ciepła woda

Doświadczenie Uzasadniamy hipotezę cząsteczkowej budowy ciał. Do słoika wsypujemy kaszę gryczaną, wiejską i kuskus.

Doświadczenie

Doświadczenie Obserwacje: Poziom mieszaniny obniżył się. Puste miejsca między większymi ziarnami kaszy gryczanej zajęły mniejsze ziarenka kaszy wiejskiej i kuskus. Wniosek: Zjawisko dyfuzji potwierdza hipotezę o cząsteczkowej/ziarnistej budowie ciał.