Funkcja liniowa Wykonała: Dżesika Budzińska kl. II A.

Slides:



Advertisements
Podobne prezentacje
Przekształcenia geometryczne.
Advertisements

Temat: Funkcja wykładnicza
CIĄGI.
Opracował mgr Zenon Kubat
Materiały pochodzą z Platformy Edukacyjnej Portalu
Funkcja liniowa – - powtórzenie wiadomości
Funkcja liniowa, jej wykres i własności
JEJ WŁASNOŚCI ORAZ RODZAJE
Obliczanie miejsc zerowych funkcji kwadratowej
WŁASNOŚCI FUNKCJI LINIOWEJ
Funkcje Barbara Stryczniewicz.
Definicja funkcji f: X Y
przekształcanie wykresów funkcji
WOKÓŁ NAS.
DZIEDZINA I MIEJSCE ZEROWE FUNKCJI
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Test z działu obejmującego funkcje KOLUSZKI, 06 MARCA 2007 ROKU y x y y= -2x-6 y= ˝ x-1.
Własności funkcji kwadratowej
FUNKCJE Autor: Wiesława Przewuska.
FUNKCJE.
Poprawa pracy klasowej - Funkcja liniowa
Poprawa pracy klasowej - Funkcja liniowa
WŁASNOŚCI FUNKCJI LINIOWEJ
Układ równań stopnia I z dwoma niewiadomymi
Wykresy funkcji jednej i dwóch zmiennych
Zespół Szkół Mechanicznych w Białymstoku
Funkcje liniowe Wykresy i własności.
Funkcje matematyczne Copyright © Rafał Trzop kl.IIc.
Konkurs o tytuł „Mistrza Funkcji”
Funkcja liniowa Układy równań
Własności funkcji liniowej.
Symetrie.
OPERACJE NA WYKRESACH FUNKCJI
Badanie przebiegu zmienności funkcji
FUNKCJA LINIOWA.
Funkcja liniowa ©M.
Funkcja.
Prezentacja dla klasy III gimnazjum
Odczytywanie własności funkcji na podstawie jej wykresu
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
FUNKCJA KWADRATOWA
FUNKCJE Opracował: Karol Kara.
FUNKCJE.
Aby obejrzeć prezentację KLIKAJ myszką !!!
Ciągi i szeregi liczbowe
Funkcje Autorzy: Piotr Romanowski Marcin Warszewski kl. III b
Funkcje Barbara Stryczniewicz Co z tym zrobisz Ćwiczenia wstępne Opis funkcji,elementy Własności funkcji 4 Sposoby przedstawiania funkcji 5.
Materiały pochodzą z Platformy Edukacyjnej Portalu
FUNKCJE Pojęcie funkcji
Rozwiązywanie układów równań liniowych różnymi metodami
Funkcje.
UKŁAD RÓWNAŃ LINIOWYCH INTERPRETACJA GRAFICZNA
Funkcje.
FUNKCJA POTĘGOWA.
podsumowanie wiadomości
Materiały pochodzą z Platformy Edukacyjnej Portalu
Własności funkcji Opracowała Magdalena Pęska. Dziedzina funkcji: 1 1 X Y -6 6 x   –6,6 
Funkcja Opracował: Mateusz Michalak Gimnazjum w Blachowni ul. Bankowa 13.
Prezentacja dla klasy III gimnazjum
FUNKCJA HOMOGRAFICZNA mgr Elzbieta Markowicz-Legutko
Przekształcanie wykresów i odczytywanie własności funkcji Opracowała : KL. II LP.
FUNKCJA KWADRATOWA o Definicja o Posta ć funkcji kwadratowej Posta ć ogólna Posta ć kanoniczna Posta ć iloczynowa o Wykres funkcji kwadratowej o Własno.
DALEJ Sanok Spis treści Pojęcie funkcji Sposoby przedstawiania funkcji Miejsce zerowe Monotoniczność funkcji Funkcja liniowa Wyznaczanie funkcji liniowej,
PREZENTACJA MULTIMEDIALNA
Funkcje liniowe.
Matematyka przed egzaminem czyli samouczek dla każdego
Radosław Hołówko Konsultant: Agnieszka Pożyczka
Zależności funkcje y = x2 - 3 y = x + 3.
Podstawowe własności funkcji
Zapis prezentacji:

Funkcja liniowa Wykonała: Dżesika Budzińska kl. II A

Definicja funkcji liniowej: Funkcję określoną wzorem y= ax + b, gdzie a i b są ustalonymi liczbami rzeczywistymi, nazywamy funkcją liniową. Dziedzina funkcji: Dziedziną funkcji liniowej jest zbiór liczb rzeczywistych R; zbiorem wartości jest również R (jeśli tylko a ≠ 0). W niektórych zadaniach dziedzinę ogranicza się do pewnych podzbiorów zbioru R.

Miejsce zerowe: Miejscem zerowym funkcji y= f (x) nazywamy liczbę x1, dla której f (x1)= 0. Miejsce zerowe znajdujemy jako pierwszą współrzędną punktu przecięcia wykresu z osią x. Aby wyznaczyć rachunkowo miejsca zerowe, rozwiązuje się równanie f(x) = 0.

Monotoniczność funkcji: FUNKCJA STAŁA Funkcję y= f (x) nazywamy stałą w zbiorze A, wtedy i tylko wtedy, gdy dla dowolnych zachodzi warunek f (x1)= f (x2) f (x1) = f (x2) x1 x2

FUNKCJA MALEJĄCA Funkcję y= f (x) nazywamy malejącą w zbiorze A, wtedy i tylko wtedy, gdy dla dowolnych zachodzi warunek: jeśli x1 < x2 to f (x1) > f (x2). f (x1) > f (x2) x2 x1

FUNKCJA ROSNĄCA Funkcję y= f(x) nazywamy rosnącą w zbiorze A, wtedy i tylko wtedy, gdy dla dowolnych zachodzi warunek: jeśli x1 < x2 to f (x1) < f (x2). f (x1) < f (x2) x1 x2

FUNKCJA NIEMALEJĄCA Funkcję f nazywamy niemalejącą w zbiorze A, wtedy i tylko wtedy, gdy dla dowolnych zachodzi warunek: x1 < x2 to f (x1) ≤ f (x2)

FUNKCJA NIEROSNĄCA Funkcję f nazywamy nierosnącą w zbiorze A, wtedy i tylko wtedy, gdy dla dowolnych zachodzi warunek: x1 < x2 to f (x1) ≥ f (x2)

FUNKCJA RÓŻNOWARTOŚCIOWA: Funkcję f : X -> Y, która każdej parze różnych argumentów przyporządkowuje się różne wartości, tzn. taką, że: to

Funkcja parzysta: Funkcję f określoną w zbiorze Df nazywamy parzystą jeżeli dla każdego argumentu liczba oraz Funkcja f jest parzysta wtedy i tylko wtedy, gdy zbiór D jest symetryczny względem zera oraz oś OY jest osią symetrii wykresu tej funkcji.

FUNKCJA PARZYSTA

FUNKCJA NIEPARZYSTA: Funkcję f określoną z zbiorze Df nazywamy nieparzystą, jeżeli dla każdego argumentu liczba oraz Funkcja f jest nieparzysta wtedy i tylko wtedy, gdy zbiór jest symetryczny względem zera oraz punkt O= (0,0) jest Df środkiem symetrii wykresu tej funkcji.

FUNKCJA NIEPARZYSTA

WYKRES FUNKCJI y+ax+b : Wykresem funkcji y= ax+b jest prosta przechodząca przez początek układu współrzędnych i punkt (1,a). Wyraz a nazywa się współczynnikiem kątowym wykresu funkcji y=ax+b - jeśli a>0, to funkcja jest rosnąca jeśli a<0, to funkcja jest malejąc jeśli a=0, to funkcja jest stała Jeśli a>0, to prosta będąca wykresem funkcji y=ax+b jest nachylona do dodatniej półosi x pod kątem ostrym. Jeśli a<0, to prosta będąca wykresem funkcji y=ax+b jest nachylona do dodatniej półosi x pod kątem rozwartym. Jeśli a=0, to prosta będąca wykresem funkcji y=ax+b pokrywa się z osią x.

Wykresem funkcji y=ax+b jest prosta równoległa do wykresu funkcji y=ax, która przecina oś y w punkcie (0,b). Ponieważ wykresem funkcji y=ax+b jest prosta, więc wystarczy obrać dwa punkty leżące na wykresie, by narysować cały wykres.