Liczba π Marta Pieniaka.

Slides:



Advertisements
Podobne prezentacje
Funkcje tworzące są wygodnym narzędziem przy badaniu zmiennych losowych o wartościach całkowitych nieujemnych. Funkcje tworzące pierwszy raz badał de.
Advertisements

Liczba" " Nocoń Dominik.
Wielki symbol Geometryczny liczby
Podziwu godna liczba Pi trzy koma jeden cztery jeden.
Liczba Pi.
Liczba π.
Historia i zastosowanie liczby pi
Materiały pochodzą z Platformy Edukacyjnej Portalu
Liczba π.
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Fermat docenił znaczenie wprowadzenia do matematyki przez matematyka francuskiego F. Viete'a oznaczeń literowych i zastosował je w geometrii. W rezultacie,
Dzień liczby π …
Liczby całkowite.
NAJCIEKAWSZE „OKAZY” W ŚWIECIE LICZB
CIEKAWE LICZBY DAWID ŁUBIK.
TA NIEZWYKŁA LICZBA π.
p Liczba Pi Ludolfina p ≈ 3, …
Koło i okrąg.
KOŁO i OKRĄG.
Liczba.
GEOMETRIA PROJEKT WYKONALI: Wojciech Szmyd Tomasz Mucha.
Liczba na przestrzeni wieków.
szczególnych Granice ciągów. Postaraj się przewidzieć
Sekrety matematyki Tajemnicza liczba π START.
„Z Hewelianum odkrywamy tajemnice... MATEMATYKI”
Pole koła Violetta Karolczak SP Brzoza.
Matematyka Matematyka teoretyczna (nazywana czasami matematyką czystą) jest często rozwijana bez wyraźnego związku z konkretnymi zastosowaniami. W tej.
WITAJ!!! Opracowanie: Beata Charyga.
LICZBA Alicja Pawłowska 1B.
Dane INFORMACYJNE Nazwa szkoły:
Liczba.
Figury płaskie I PRZESTRZENNE Wykonała: Klaudia Marszał
LICZBA.
Zastosowania ciągów.
WITAMY W ŚWIECIE MATEMATYKI
Liczba .
Liczba PI
Wielokąty foremne.
Archimedes Wielki fizyk i uczony
...czyli niezwykła historia liczby...
Liczba π 3,
KOŁA I OKRĘGI.
Zadziwiająca liczba .
8,20 1,85 123,25 9,64 LICZBY DZIESIĘTNE W ŻYCIU CODZIENNYM 2,43 11,98
Fascynująca liczba Pi.
WIELKI SYMBOL GEOMETRYCZNY.
Matematyka w obiektywie
Materiały pochodzą z Platformy Edukacyjnej Portalu
Liczba Pi.
Niesamowita liczba π.
Stała matematyczna.
Krótka historia matematycznych odkryć
Rodzaje Liczb JESZCZE SA TAKIE
Rodzaje liczb.
Liczba Pi.

Projekt edukacyjny wykonany przez uczniów klasy IIa gimnazjum: -Małgorzatę Górkę; -Amandę Szymańską; -Magdalenę Czyżniak; -Kingę Ignaczak; -Michała Pisarka;
...czyli niezwykła historia liczby...
Pi - ematy Wiersze o liczbie Pi.
TWIERDZENIE PITAGORASA Monika Grudzińska-Czerniecka.
Tajemnicza liczba Pi π.
Liczba π, ludolfina – stała matematyczna, która pojawia się w wielu działach matematyki i fizyki. W geometrii euklidesowej π jest równe stosunkowi obwodu.
Liczba π.
Liczba π Aleksandra Tera 6F.
W konstrukcyjnym świecie
Liczba π.
Koła i okręgi – powtórzenie.
Przedstawiają uczniowie klasy II c
Liczba π ŚWIATOWY DZIEŃ LICZBY π marca.
Zapis prezentacji:

Liczba π Marta Pieniaka

Liczba π Liczba π (czytaj: liczba pi), ludolfina - stała matematyczna, która pojawia się w wielu dziedzinach matematyki i fizyki. W geometrii euklidesowej π jest równe stosunkowi długości obwodu koła do długości jego średnicy. Można też zdefiniować π na inne sposoby, na przykład jako pole koła o promieniu równym 1 albo jako najmniejszą dodatnia wartość x, dla której sin(x) = 0. Liczba π z dokładnością 100 miejsc po przecinku: 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 ...

Wprowadzenie Symbol π wprowadził w 1706 roku William Jones w książce Synopsis Palmariorum Mathesos (π jest pierwszą literą greckiego słowa περίμετρον - perimetron, czyli obwód) a rozpowszechnił go później Leonhard Euler. Liczba π jest znana także jako stała Archimedesa lub ludolfina – tak została nazwana na cześć Ludolpha van Ceulena (obaj obliczyli przybliżone wartości π).

Historia obliczeń wartości Π Z liczbą π, jakkolwiek pojawia się ona w wielu wzorach z różnych dziedzin (włączając w to nawet fizykę kwantową), ludzie zetknęli się już w starożytności, zauważając, że stosunek obwodu koła do jego średnicy jest wartością stałą. Babilończycy przyjmowali, że jest on równy w przybliżeniu 3. Pierwsze źródła świadczące o świadomym korzystaniu z własności liczby π pochodzą ze starożytnego Babilonu. Na jednej z kamiennych tablic, datowanej na lata 1900-1680 p.n.e. pojawia się opis wartości obwodu koła o średnicy 1, przybliżony przez wartość 3,125. Na pochodzącym sprzed 1650 r. p.n.e. egipskim papirusie Rhinda, autorstwa skryby (według niektórych źródeł tylko kopisty oryginału) króla Ahmesa zatytułowanym Wprowadzenie do wiedzy o wszystkich istniejących rzeczach można znaleźć rozwiązania zadań matematycznych zawierające m.in. odniesienia do wartości liczby π, przybliżanej wartością                   . Podejście starożytnych uczonych do matematyki, w szczególności do liczby π było ściśle użytkowe, nie stosowano właściwie żadnej abstrakcji, a reguły matematyczne opisywane były prostymi przykładami użytkowymi, niezbędnymi w architekturze czy księgowości. W Biblijnej Drugiej Księdze Kronik (Biblia Tysiąclecia, rozdział 4, werset 2) pochodzące z V - IV w. p.n.e. można znaleźć słowa: Następnie sporządził odlew okrągłego "morza" o średnicy dziesięciu łokci, o wysokości pięciu łokci i o obwodzie trzydziestu łokci. Z opisu tego wynika, iż wykonawca owego "morza" przyjął oszacowanie        

Metody matematyków obliczania wartości Π Archimedes, będący prawdopodobnie pierwszym matematykiem badającym dokładniej własności liczby π w III w. p.n.e. oszacował ją z dokładnością do dwóch miejsc po przecinku. Użył do tego metody bazującej na zależnościach geometrycznych, metody pozwalającą oszacowywać π z (teoretycznie) dowolną dokładnością, przez następne wieki była metodą najlepszą, często niezależnie od prac Archimedesa wykorzystywaną przez późniejszych matematyków. Wynikiem jego pracy było podanie przedziału ,w jakim mieści się liczba π:                   . Liu Hui, chiński matematyk , żyjący w III wieku naszej ery, metodą Archimedesa dla wieloboków o 3072 bokach ustalił przybliżoną wartość liczby π na 3,1415. Zu Chongzhi, chiński cesarski astronom około 500 roku n.e. podał dwa przybliżenia liczby π - wcześniejsze -          , oraz późniejsze, wynoszące     , które do XV wieku było najlepszym znanym ludzkości przybliżeniem wartości liczby π (na szczególną uwagę zasługuje łatwość jego zapamiętania: 11-33-55). Wartości te zanotowano w pochodzących z tego okresu kronikach dworskich. Użył on metody Archimedesa, lecz najprawdopodobniej nie miał dostępu do jego prac. Brahmagupta, hinduski matematyk, sto lat później (około roku 600 r.n.e.), podał inne przybliżenie wartości π -                      , stosując własności 12,24,48 i 96-boków, których długości obwodów wynosiły odpowiednio                                    . W rzeczywistości                 …..

... dalsza część … W 1400 roku hinduski matematyk Madhava jako pierwszy w historii do obliczenia wartości π użył ciągów nieskończonych. W istocie odkrył on wzór, do którego Leibniz i Gregory (autorstwo przypisuje się obu) doszli w 1674. Natomiast pierwszym z Europejczyków, który użył metody aproksymacji π przy pomocy ciągów nieskończonych był John Wallis, który w 1656 roku w dziele Arithmetica infinitorum podał bardzo zgrabny - aczkolwiek niezbyt użyteczny - wzór na π. Od tego czasu, do obliczania wartości π, zaczęto używać ciągów nieskończonych - zazwyczaj przy pomocy rozwinięcia funkcji arcus sinus lub arcus tangens w szereg potęgowy. Mimo to w 1596 roku Ludolph van Ceulen podał przybliżenie π z dokładnością do 35. miejsca po przecinku, używając do tego metody Archimedesa. Obliczenia prowadził przez całe życie. Ludolph van Ceulen stosując metodę Archimedesa oblicza wartość π z dokładnością do 20 miejsc po przecinku, publikując wynik w dziele Van den Circkel (1596). Według biografów Ceulen większość swojego życia poświęcił próbom coraz lepszego przybliżenia π, zwanej niekiedy od jego imienia Ludolfiną, pod koniec życia podając π z dokładnością do 35 miejsc po przecinku (użył do tego wieloboku o 262 bokach!) - wartość ta została wyryta na jego płycie nagrobkowej.

Wzory do obliczania Π Powierzchnia koła jednostkowego:                            Obwód okręgu jednostkowego:                      François Viète, 1593:                                                       Leibniz:                                                         Wallis:                                                              

Znak π Znak π jest oznaczeniem matematycznym wywodzącym się z litery alfabetu greckiego powszechnie używanym do oznaczenia liczby, której wartością jest stosunek długości obwodu koła do długości jego średnicy. Jej pierwszego utożsamienia z wartością               dokonał w dziele Synopsis Palmariorum Matheseos (1706) William Jones, walijski matematyk i pisarz. Oznaczenie to nie zdobyło uznania ani rozgłosu wśród matematyków, do czasu użycia go przez Leonarda Eulera w 1737 roku, w dziele Analiza, chociaż można znaleźć je we wcześniejszych pracach matematyków Williama Oughtreda, Isaaca Barrowa i Davida Gregory'ego. Oznaczenie pochodzi najpewniej ze związku wartości pi i długości obwódu, którego grecka nazwa to περιμετρον. W Introductio in Analysin Infinitorum (1748) Euler pisze: Satis liquet Peripheriam hujus Circuli in numeris rationalibus exacte exprimi non posse, per approximationes autem inventa est .. esse = 3,14159 [etc., to 128 places], pro quo numero, brevitatis ergo, scribam pi, ita ut sit π = Semicircumferentiae Circuli, cujus Radius = 1, seu pi erit longitudo Arcus 180 graduum. Prawdopodnie znaczący wpływ na popularyzację symbolu π miało jego pojawienie się w Mathematical Tables (1742) Henry'ego Sherwina.

Kultura π Liczba π ma swoich licznych wielbicieli. Obchodzą oni dzień π (14 marca) (amerykański sposób zapisu daty 3.14) oraz dzień aproksymacji π (22 lipca) (europejski sposób zapisu daty 22/7=~3.1428). Dla numerologów jest ona symbolem idealnej harmonii. Tworzone są też bardzo zgrabne, śmieszne wierszyki, a nawet opowiadania, w których długość każdego kolejnego słowa jest równa kolejnej cyfrze w rozwinięciu dziesiętnym liczby π. Niemcom w zapamiętaniu aproksymacji π uzyskanej przez van Ceulena może być pomocny wiersz napisany przez Clemensa Brentano, który jest przypuszczalnie pierwszym tego typu tekstem: Nie, o Gott, o guter, verliehst Du meinem Hirne die Kraft mächtige Zahlreihn dauernd verkettet bis in die spaetere Zeit getreu zu merken. Drum hab ich Ludolph mir zu Lettern umgeprägt. Nigdy, o dobry Boże, nie użyczysz mi mocy spamiętania po wsze czasy potężnego, ze sobą trwale sprzężonego szeregu cyfr. Dlatego przyswoiłem sobie ludolfinę w słowach. (przekład Witolda Rybczyńskiego) Pierwszym polskim wierszem tego typu jest nieco toporny wiersz Kazimierza Cwojdzińskiego z 1930 roku, zamieszczony w październikowym wydaniu czasopisma Parametr, poświęconemu nauczaniu matematyki. Należy jednak pamiętać, że tekst powstał przed reformą ortografii z 1936 roku. Wtedy pisano nie ma w znaczeniu 'nie posiada' i niema w znaczeniu 'nie jest'. Kuć i orać w dzień zawzięcie, Bo plonów niema bez trudu! Złocisty szczęścia okręcie, Kołyszesz... Kuć! My nie czekajmy cudu. Robota to potęga ludu! Liczba π była inspiracją wielu artystów i reżyserów. Darren Aronofsky poruszył jej temat w swoim filmie Pi. W literaturze Pi jest imieniem bohatera powieści Yanna Martela-"Życie Pi".

Niewymierność i przestępność liczby π Liczba π jest liczbą niewymierną, co oznacza, że nie może być zapisana jako iloraz dwóch liczb całkowitych. Udowodnił to w roku 1761 Johann Heinrich Lambert. Co więcej, jest ona liczbą przestępną, co w 1882 roku wykazał Ferdinand Lindemann. Oznacza to, że nie istnieje wielomian o współczynnikach całkowitych, którego π jest pierwiastkiem. W rezultacie nie jest możliwe zapisanie π za pomocą skończonego zapisu złożonego z liczb całkowitych, działań arytmetycznych, ułamków oraz potęg i pierwiastków. To ostatecznie rozstrzyga, że niemożliwa jest klasyczna konstrukcja (wyłącznie przy pomocy linijki i cyrkla) kwadratu o powierzchni równej powierzchni danego koła, gdyż współrzędne wszystkich punktów, które mogą być skonstruowane w taki sposób, należą do zbioru liczb nazywanych liczbami algebraicznymi. Problem ten zwany jest kwadraturą koła.

Często występujące przekształcenie π

Najpopularniejsze aproksymacje wartości π Liczne wzory pozwalające wyliczać π z dowolną dokładnością podane są na końcu artykułu. W praktyce posługujemy się przybliżonymi wartościami 3,14 lub 22/7, rzadko kiedy trzeba korzystać z przybliżeń dokładniejszych: 3,1416 lub 3,14159 albo 355/113 (ten ostatni ułamek jest równy π z dokładnością 6 miejsc po przecinku).

Korzystałam z źródła informacji: WIKIPEDIA KONIEC Dziękuję za uwagę  !! Korzystałam z źródła informacji: WIKIPEDIA