Co to jest trójkąt? Podział trójkątów. Pojęcia związane z trójkątami. Wybrane trójkąty i ich własności. Przystawanie trójkątów. Twierdzenie Pitagorasa.

Slides:



Advertisements
Podobne prezentacje
KLASYFIKACJA TRÓJKĄTÓW ZE WZGLĘDU NA BOKI I KĄTY
Advertisements

WITAMY W ŚWIECIE MATEMATYKI
Opracowała: Maria Pastusiak
TRÓJKĄTY Karolina Szczypta.
Figury płaskie-czworokąty
KLASYFIKACJA TRÓJKĄTÓW Asia Niemiro klasa IIa gim.
Okręgiem o środku O i promieniu r nazywamy zbiór punktów płaszczyzny, których odległości od punktu O są równe r r - promień okręgu. r O O - środek.
Klasyfikacja Trójkątów. Klasyfikacja trójkątów..
Trójkąty Wykonali: Michał Płaza i Kacper Jackiewicz.
CZWOROKĄTY Patryk Madej Ia Rad Bahar Ia.
Trójkąty.
PODRÓŻE W KRAINIE TRÓJKĄTÓW
Spis treści : Definicja trójkąta Definicja trójkąta Definicja trójkąta Definicja trójkąta Własności Własności Własności Podział trójkątów ze względu na.
materiały dydaktyczne dla klasy piątej
TRÓJKĄTY I ICH WŁASNOŚCI
TRÓJKĄTY.
Figury płaskie.
WIELOKĄTY PRZYKŁADY WIELOKĄTÓW TRÓJKĄTY CZWOROKĄTY WIELOKĄTY FOREMNE.
„Własności figur płaskich” TRÓJKĄTY
Trójkąty ich rodzaje i własności
Figury w otaczającym nas świecie
Krótki kurs geometrii płaszczyzny
,, W KRAINIE CZWOROKĄTÓW ,, Adam Filipowicz VA SPIS TREŚCI
Trójkąty - ich właściwości i rodzaje
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Trójkąty i ich własności
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Trójkąty.
Trójkąty.
Jaki kąt nazywamy kątem ostrym ?
TRÓJKĄTY Opracowała: Renata Pieńkowska.
Trójkąty.
Rodzaje i podstawowe własności trójkątów i czworokątów
Podstawowe własności trójkątów
TRÓJKĄTY Autor: Anna Mikuć START.
KLASYFIKACJA TRÓJKĄTÓW
Opracowała: Iwona Kowalik
Rodzaje trójkątów Opracowała: Mariola Grzybowska.
Trójkąty Co to jest? Jakie ma własności i wzory?
WITAMY W ŚWIECIE MATEMATYKI
Przypomnienie wiadomości o figurach geometrycznych.
WŁASNOŚCI FIGUR PŁASKICH
Własności Figur Płaskich
WŁASNOŚCI FIGUR GEOMETRYCZNYCH
Wielokąty wpisane i opisane na okręgu
FIGURY PŁASKIE Autorzy: Agata Kwiatkowska Olga Siewiorek kl. I a Gimnazjum Nr 2 w Trzebini.
Możesz kliknąć na odnośnik. Aby wyjść naciśnij Esc
Podział trójkątów ze względu na boki i kąty.
Trójkąty i ich własności Michał Kassjański Konrad Zuzda.
Okrąg opisany na trójkącie. Okrąg wpisany w trójkąt
Pola i obwody figur płaskich.
Opracowała: Marta Bożek
Konkurs pt. ”Matematyka wokół nas”. Własności figur płaskich- trójkąty
Twierdzenie pitagorasa
Autor: Marcin Różański
Trójkąty Katarzyna Bereźnicka
WIELOKĄTY Karolina Zielińska kl.v Aleksandra Michałek kl v
Co to jest wysokość?.
Rodzaje trójkątów i ich własności.
WSZYSTKO CO POWINIENEŚ O NICH WIEDZIEĆ…
FIGURY GEOMETRYCZNE Pracę wykonali : Adam Nikodem Maksym Wróbel Bartłomiej Kaleta Szata graficzna i efekty: Adam Nikodem Materiały: Maksym Wróbel Bartłomiej.
FIGURY PŁASKIE.
Figury płaskie.
Figury geometryczne.
Okrąg opisany na trójkącie.
Matematyka czyli tam i z powrotem…
Okrąg wpisany w trójkąt.
Rodzaje i własności trójkątów
Opracowała : Ewa Chachuła
opracowanie: Ewa Miksa
Zapis prezentacji:

Co to jest trójkąt? Podział trójkątów. Pojęcia związane z trójkątami. Wybrane trójkąty i ich własności. Przystawanie trójkątów. Twierdzenie Pitagorasa.

Trójkąt jest to figura geometryczna.Trójkątem nazywamy wielokąt o trzech bokach. Podstawą trójkąta nazywamy jeden z tych boków dowolnie wybrany, zaś pozostałe dwa boki nazywamy ramionami trójkąta. We wszystkich rodzajach trójkątów suma ich miar wynosi 180 stopni. Ramie Ramie Podstawa

Trójkąty dzielimy ze względu na : długości boków miary kątów.

Przy podziale ze względu na boki wyróżniamy: trójkąt różnoboczny ma każdy bok innej długości. trójkąt równoramienny ma dwa boki tej samej długości. trójkąt równoramienny trójkąt równoboczny ma wszystkie trzy boki tej samej długości. trójkąt równoboczny trójkąt trójkąt trójkąt różnoboczny równoramienny równoboczny

Przy podziale ze względu na kąty wyróżniamy: trójkąt ostrokątny, którego wszystkie kąty wewnętrzne są ostre. trójkąt prostokątny to taki, w którym jeden z kątów wewnętrznych jest prosty (90° czyli ). Boki tworzące kąt prosty nazywamy przyprostokątnymi pozostały bok to przeciwprostokątna. trójkąt rozwartokątny którego jeden kąt wewnętrzny jest rozwarty. trójkąt trójkąt trójkąt ostrokątny prostokątny rozwartokątny

Wysokość trójkąta to odcinek łączący jego wierzchołek z rzutem prostokątnym tego wierzchołka na prostą zawierającą przeciwległy bok. Każdy trójkąt ma trzy wysokości, które przecinają się w punkcie zwanym ortocentrum tego trójkąta. Środkowa boku trójkąta to odcinek łączący wierzchołek trójkąta ze środkiem przeciwległego boku. Każdy trójkąt ma trzy środkowe, które przecinają się w jednym punkcie, zwanym środkiem ciężkości (barycentrum) trójkąta. Punkt ten dzieli każdą ze środkowych na dwie części, przy czym odcinek łączący barycentrum z wierzchołkiem jest dwa razy dłuższy od odcinka łączącego barycentrum ze środkiem boku. Symetralna boku trójkąta to prosta prostopadła do tego boku i przechodząca przez jego środek. Każdy trójkąt ma trzy symetralne boków, przecinające się w punkcie będącym środkiem okręgu opisanego na tym trójkącie. Dwusieczne kątów wewnętrznych trójkąta przecinają się w punkcie, który jest środkiem okręgu wpisanego w ten trójkąt.

Własności trójkąta: równobocznego o kątach 30 ° 60° 90° o kątach 45° 45° 90° trójkąt równoboczny trójkąt o kątach 30 ° 60 ° 90 ° trójkąt o kątach ° 90 ° 90° 45° αβ γ 30° 60°90°

Trójkąt równoboczny ma wszystkie boki równej długości i wszystkie kąty równe 60°. H α, β, γ = 60° A AA αβ γ

°° ° 30° 60°90° C A B H= H= C = 2A

° ° ° 30° 60°90° C A B H= H= C = 2A

I cecha przystawania trójkątów (bbb) Jeżeli trzy boki jednego trójkąta są odpowiednio równe trzem bokom drugiego trójkąta, to trójkąty są przystające. II cecha przystawania trójkątów (bkb) Jeżeli dwa boki i kąt między nimi zawarty jednego trójkąta są odpowiednio równe dwóm bokom i kątowi między nimi zawartemu drugiego trójkąta, to trójkąty są przystające III cecha przystawania trójkątów (kbk) Jeżeli bok i dwa kąty do niego przyległe jednego trójkąta są odpowiednio równe bokowi i dwóm kątom do niego przyległym drugiego trójkąta, to trójkąty są przystające.

Twierdzenie Pitagorasa – jest twierdzeniem, geometrii euklidesowej które w naszym (zachodnio-europejskim) kręgu kulturowym przypisywane jest żyjącemu w VI wieku p.n.e. greckiemu,matematykowi i filozofowi Pitagorasowi, chociaż niemal pewne jest, że znali je przed nim starożytni Egipcjanie. Wiadomo też, że jeszcze przed Pitagorasem znano je w starożytnych Chinach i Indiach Babilonii. Teza: W dowolnym trójkącie prostokątnym, suma pól kwadratów zbudowanych na przyprostokątnych trójkąta prostokątnego równa jest polu kwadratu zbudowanego na przeciwprostokątnej tego trójkąta. a 2 + b 2 = c 2 Jeżeli na bokach trójkąta prostokątnego zbudujemy kwadraty, to suma pól kwadratów zbudowanych na przyprostokątnych tego trójkąta jest równa polu kwadratu zbudowanego na przeciwprostokątnej. W sytuacji na rysunku obok: suma pól kwadratów "fioletowego" i "zielonego" jest równa polu kwadratu "czerwonego". c2c2 c2c2 a2a2 a2a2 b2b2 b2b2

entacja/trojkaty1e.htm Podręcznik dla III klasy gimnazjum-Wydawnictwo szkolne PWN