Inteligencja Obliczeniowa Wstęp

Slides:



Advertisements
Podobne prezentacje
Data Mining w e-commerce
Advertisements

Włodzisław Duch Katedra Informatyki Stosowanej,
Sztuczna Inteligencja Reprezentacja wiedzy I Logika przybliżona
Inteligencja Obliczeniowa Metody oparte na podobieństwie do wzorców.
Inteligencja Obliczeniowa Sieci dynamiczne cd.
Inteligencja Obliczeniowa Sieci RBF.
Katedra Informatyki Stosowanej UMK
Katedra Informatyki Stosowanej UMK
Inteligencja Obliczeniowa Wizualizacja.
Uczenie konkurencyjne.
Samoorganizacja: uczenie bez nadzoru.
Inteligencja Obliczeniowa Sieci dynamiczne.
Inteligencja Obliczeniowa Metody probabilistyczne.
Wykład 28 Włodzisław Duch Uniwersytet Mikołaja Kopernika
Inteligencja Obliczeniowa Perceptrony o dużym marginesie błędu
Inteligencja Obliczeniowa Sieci o zmiennej strukturze.
Inteligencja Obliczeniowa Perceptrony
Badania operacyjne. Wykład 1
Sztuczna Inteligencja Reprezentacja wiedzy I Logika przybliżona
Uniwersytet Rzeszowski
Sztuczna Inteligencja Reprezentacja wiedzy I Wstęp. Włodzisław Duch Katedra Informatyki Stosowanej UMK Google: W. Duch.
Inteligencja Obliczeniowa Klasteryzacja i uczenie bez nadzoru.
Linear Methods of Classification
Mirosław ŚWIERCZ Politechnika Białostocka, Wydział Elektryczny
AI w grach komputerowych
ALGORYTMY OPTYMALIZACJI
formalnie: Uczenie nienadzorowane
Wspomaganie decyzji nie zwalnia od decyzji...
Komputerowe wspomaganie medycznej diagnostyki obrazowej
Sztuczna Inteligencja
METODY NUMERYCZNE I OPTYMALIZACJA
SYSTEMY EKSPERTOWE I SZTUCZNA INTELIGENCJA
1. Współczesne generacje technologii
w ekonomii, finansach i towaroznawstwie
Politechniki Poznańskiej
Do technik tych zalicza się: * sztuczne sieci neuronowe
Sieci neuronowe, falki jako przykłady metod analizy sygnałów
Modelowanie Kognitywne
Adaptacyjne Systemy Inteligentne Maciej Bielski, s4049.
4 lipca 2015 godz pok września 2015 godz pok. 212.
Powiat Górowski/ Powiatowe Centrum Doskonalenia Nauczycieli i Poradnictwa Psychologiczno-Pedagogicznego w Górze Priorytet III Wysoka jakość systemu oświaty.
Wybrane zagadnienia inteligencji obliczeniowej Zakład Układów i Systemów Nieliniowych I-12 oraz Katedra Mikroelektroniki i Technik Informatycznych proponują.
AI - Sztuczna inteligencja w oprogramowaniu dla przedsiębiorstw
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Modelowanie i podstawy identyfikacji 2015/2016 Modele neuronowe – podstawy,
Nikogo nie trzeba przekonywać, że eksperymenty wykonywane samodzielnie przez ucznia czy prezentowane przez nauczyciela sprawiają, że lekcje są bardziej.
KNW K Konwencjonalne oraz N Niekonwencjonalne metody W Wnioskowania.
Narzędzia AI Dominik Ślęzak, Pokój Wykład dostępny na:
GeneracjeTechnologia Architektura przetwarzania 0. Przekaźniki elektromechaniczne 1. Lampy elektronowe 2. Tranzystory 3. Układy scalone 3.5.Układy dużej.
Sztuczne Sieci Neuronowe Wstęp Wykład 1 Włodzisław Duch Katedra Informatyki Stosowanej, WFAiIS Laboratorium Neurokognitywne ICNT Uniwersytet Mikołaja Kopernika.
Metody Inteligencji Obliczeniowej Adrian Horzyk Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii.
Belief Nets Autor: inż. 2013r źródło tła:
Inteligencja Obliczeniowa Perceptrony o dużym marginesie błędu
Learnmatrix, Adaline, Madaline i modele liniowe
Systemy neuronowo – rozmyte
Zmiany w programie kierunku Kognitywistyka
Kognitywne właściwości sieci neuronowych
Perceptrony o dużym marginesie błędu
Sztuczne Sieci Neuronowe Wstęp
Inteligencja Obliczeniowa Wstęp
Sztuczne Sieci Neuronowe Wstęp
Włodzisław Duch Katedra Informatyki Stosowanej,
Perceptrony o dużym marginesie błędu
Systemy Ekspertowe i Sztuczna Inteligencja trudne pytania
Systemy eksperckie i sztuczna inteligencja
Inteligencja Obliczeniowa Perceptrony
Katedra Informatyki Stosowanej UMK
Perceptrony wielowarstwowe, wsteczna propagacja błędów
Zapis prezentacji:

Inteligencja Obliczeniowa Wstęp Wykład 1 Włodzisław Duch Katedra Informatyki Stosowanej, Uniwersytet Mikołaja Kopernika Google: W. Duch (c) 1999. Tralvex Yeap. All Rights Reserved

Co to jest ? Informatyka: definicja Association for Computing Machinery The systematic study of algorithmic processes that describe and transform information: their theory, analysis, design, efficiency, implementation, and application … Denning, et al. 1988 Co z zagadnieniami, dla których nie ma efektywnych algorytmów? Lub żadnych algorytmów?

Inteligencja obliczeniowa Computational Intelligence (CI) Zajmuje się rozwiązywaniem problemów, które nie są efektywnie algorytmizowalne. Nie ma efektywnego algorytmu? Drobna zmiana może wymagać całkiem innego programu! Nie można przewidzieć wszystkich zmian. Rozwiązanie wymaga inteligencji; jeśli szukamy rozwiązania za pomocą obliczeń to jest to „inteligencja obliczeniowa”.

Problemy efektywnie niealgorytmizowalne Teoria złożoności obliczeniowej, problemy NP-trudne Liczba kroków algorytmu dla złożonych sytuacji rośnie w sposób szybszy niż jakikolwiek wielomian liczby elementów (złożoności specyfikacji problemu). Przykład: problem komiwojażera. Dla 100 miejsc mamy 100!=10158 możliwości. Problemy praktyczne: gry planszowe, układanie planu, upakowanie towarów.

Problemy niealgorytmizowalne Przykłady: rozumienie sensu zdań, rozpoznawanie twarzy i obrazów, rozpoznawanie mowy i sygnałów, percepcja, rozpoznawanie pisma ręcznego, sterowanie robotem, nieliniowymi układami, diagnostyka medyczna, planowanie terapii, rozwiązywanie nietypowych problemów, działania twórcze. Wiele problemów nie ma natury dyskretnej.

CI i sztuczna inteligencja Kognitywistyka: CI: percepcja i sterowanie: zachowania sensomotoryczne; AI: wyższe czynności poznawcze: logika, język, rozumowanie, rozwiązywanie problemów. AI to część CI posługująca się symboliczną reprezentacją wiedzy, zajmuje się rozumowaniem, tworzeniem systemów ekspertowych. CI: automatyzacja procesów akwizycji wiedzy. CI-AI: niewielkie nakrywanie, trochę systemów hybrydowych. iOmniscient: Neural Networks and Heuristic Algorithms

CI: problemy 1 Kilka problemów do rozwiązania których potrzebne są metody inteligencji obliczeniowej: Klasyfikacja struktur: rozpoznawanie obrazów, mowy, pisma, struktur chemicznych, zachowań człowieka lub maszyny, stanu zdrowia, sensu wyrazów i zdań … Odkrywanie wiedzy w bazach danych, zrozumienie struktury danych, konstrukcja wyjaśniających teorii. Selekcja cech - na co warto zwrócić uwagę, co jest niepotrzebne; redukcja wymiarowości problemu. Inteligentne szukanie z uwzględnieniem semantyki pytania – szukarki, Information Retrieval (IR).

CI: problemy 2 Inteligentne wspomaganie decyzji: diagnozy medyczne, decyzje menedżerskie. Gry strategiczne: uczenie się na własnych i cudzych błędach. Kontrola: jakości produktów, ostrości obrazu kamery, dostrojenia aparatury. Sterowanie: samochodu, urządzeń technicznych, fabryk, społeczeństwa ... Planowanie: budowa autostrad, wieżowców, optymalizacja działań i organizacji, planów działania. Optymalne spełnianie ograniczeń, optymalizacja wielokryterialna, dopełnianie brakującej wiedzy.

CI: problemy 3 Detekcja regularności, analiza interesujących skupień, samoorganizacja, uczenie spontaniczne, geny, białka. Separacja sygnałów z wielu źródeł: oczyszczanie obrazów z szumów, oddzielanie artefaktów, separacja sygnałów akustycznych, sygnałów. Prognozowanie: wskaźników ekonomicznych, pogody, plam na Słońcu, decyzji zakupu, intencji człowieka. Askrypcja danych: łączenie informacji z kilku źródeł. Wizualizacja informacji ukrytej w bazach danych. Zrozumienie umysłu: doświadczeń psychologicznych, sposobu rozumowania i kategoryzacji, poruszania się i planowania, procesów uczenia.

CI: inspiracje 1 CI czerpie inspiracje z różnych źródeł, w tym z: Neurobiologii: jak robią to mózgi? Sieci neuronowe – duża dziedzina, sieci wszelkich rodzajów, modele hierarchiczne, samoorganizujące. Część bliska neurobiologii – computational cognitive neurosciences, szczegółowe modele neuronów. Część bliska statystyki i rozpoznawania wzorców (pattern recognition). Część pośrednia: CMAC (Cerebellar Model Arithmetic Computer); SDM (Sparse Distributed Memory) ...

CI: inspiracje 2 Psychologii: jak robią to umysły? Modele koneksjonistyczne: sieci i rozproszone przetwarzanie równoległe, ale węzły nie działają jak neurony – sieci Bayesowskie, modele graficzne, uczenie się przez porcjowanie, mechanizmy uwagi. Biologii: algorytmy ewolucyjne, genetyczne, rojowe, mrówkowe. Medycyny: działanie układu immunologicznego. Logiki: uwzględnianie informacji niepewnej, logika rozmyta (fuzzy), przybliżona (rough), teoria wiarygodności Dempstera-Shafera (posybilistyczna), logika wielowartościowa.

CI: inspiracje 3 Z uczenia maszynowego: szukanie reguł symbolicznych, automatyczna akwizycja wiedzy. Metody oparte na ocenie podobieństwa do sąsiadów, np. NNC (Nearest Neighbor Classifiers), k-NN Metody oparte na śladach pamięci (memory-based methods, memory-based reasoning), szukania interesujących prototypów. Statystyki: statystyka wielowymiarowa, klasyfikatory Bayesowskie, sieci probabilistyczne, klasteryzacja, kwantyzacja wektorowa. Teorii wnioskowania: podejmowanie decyzji, metody probabilistyczne, ocena ryzyka, drzewa decyzji.

CI: inspiracje 4 Teorii informacji: maksymalizacji entropii, wartości oczekiwanych, informacji wzajemnej ... Matematyki stosowanej: teoria optymalizacji, estymacji, badań operacyjnych, taksonomia numeryczna, teoria aproksymacji, regresji wielu zmiennych, falek ... Metod wizualizacji wielowymiarowych danych. Informatyki: współbieżne systemy programowania. Fizyki: fizyka statystyczna, metody Monte Carlo, stopniowe studzenie, funkcje potencjalne, układy dynamiczne, teoria chaosu, synergetyka. Nauk technicznych: teorii sterowania, automatyki, robotyki.

Inteligencja Obliczeniowa Sieci neuronowe Algorytmy ewolucyjne Pattern Recognition Wizuali-zacja Computational Intelligence Data + Knowledge Artificial Intelligence Logika rozmyta Statystyka wielowymiarowa AI, ES Uczenie maszynowe Metody probabilistyki

Cel dalekosiężny AI: test Turinga, maszyna nieodróżnialna od człowieka przy zdalnej konwersacji. Wymaga nie tylko zdolności lingwistycznych, ale i budowania modeli umysłowych, szerokiej wiedzy o świecie, zrozumienia stanów emocjonalnych ... CI: sztuczny szczur? Przetrwanie autonomicznego organizmu we wrogim środowisku, wymaga percepcji, kontroli, pamięci skojarzeniowej, planowania, antycypacji …

Adaptacja Cecha wielu systemów CI: rozwiązywanie zadań na podstawie przykładów. Systemy adaptujące: zmieniają wewnętrzną strukturę dostosowując się do sytuacji (np. mózgi, społeczeństwa). Adaptacja to cecha inteligencji. Systemy adaptujące się są zwykle nieliniowe, często rozproszone, składające się z wielu elementów oddziaływujących w trudny do przewidzenia sposób. 3 podstawowe rodzaje takich układów: uczące się pod nadzorem, z krytykiem i samodzielnie, bez nadzoru.

Unsupervised learning Uczenie bez nadzoru Unsupervised learning Znajdź interesujące struktury w danych. Uczenie spontaniczne, odkrywanie ciekawych struktur w przestrzeni danych, korelacja zachowań systemu ze zmianą tych struktur – dominuje w okresie niemowlęcym (również budowa teorii).

Uczenie z nadzorem Supervised learning. Zadaj pytanie – pokaż opis obiektu (wektor własności), porównaj odpowiedź z pożądaną. Uczenie nadzorowane przez nauczyciela – szkolne. Zmiana parametrów wewnętrznych – adaptacja, w przyszłości trzeba robić jak najmniej błędów. Celem nie jest uczenie „na pamięć”, lecz generalizacja.

Reinforcement learning. Uczenie z krytykiem Reinforcement learning. Optymalizacja zysków na dłuższą metę. Np. gry z przeciwnikiem, krytyką jest przegrana lub wygrana na końcu partii. Uczenie z krytykiem lub z „wzmocnieniem” pożądanych zachowań po dłuższym okresie. Uczenie dojrzałe (nabieranie „mądrości”).

Co dalej? Sieci bez wag Inne proste modele binarne Sieci Hopfielda Sieci Hebbowskie i modele mózgu Perceptrony proste Perceptrony wielowarstwowe

Koniec wykładu 1 Dobranoc ?