B R O Ń J Ą D R O W A.

Slides:



Advertisements
Podobne prezentacje
Promieniowanie wokół nas
Advertisements

T: BROŃ JĄDROWA.
BROŃ MASOWEGO RAŻENIA.
Promieniotwórczość Wykonawca: Kamil Wilk ® ™.
Ernest Rutherford Jądro Atomowe.
Promieniotwórczość Wojciech Tokarski.
Temat: SKŁAD JĄDRA ATOMOWEGO ORAZ IZOTOPY
Materiały pochodzą z Platformy Edukacyjnej Portalu
Proseminarium fizyki jądra atomowego i cząstek elementarnych I
ENERGIA JĄDROWA.
TEMAT: Reaktor jądrowy..
ENERGETYKA JĄDROWA TADEUSZ HILCZER.
TOKAMAK czyli jak zamknąć Słońce w obwarzanku ?
Czarnobyl 2011 – badania społeczne. Wielkość próby badanej: Ukraina -128 osób Polska-100 osób.
ŹRÓDŁA PROMIENIOWANIA I JEGO SKUTKI
Współcześnie na podstawie obserwacji stwierdza się, że Wszechświat ciągle się rozszerza, a to oznacza, że kiedyś musiał być mniejszy. Powstaje pytanie:
Blaski i cienie promieniotwórczości.
Konkurencyjność atomu
Przemiany promieniotwórcze.
Zalety i wady promieniotwórczości
Promieniowanie.
Broń konwencjonalna Autor: Bartosz Brenk.
„BLASKI I CIENIE PROMIENIOTWÓRCZOŚCI”
Przemiany promieniotwórcze
Badanie zjawiska promieniotwórczości
Promieniowanie to przyjaciel czy wróg?
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
PROMIENIOTWÓRCZOŚĆ.
Broń chemiczna Kamila Szwej.
Dział 3 FIZYKA JĄDROWA Wersja beta.
Co wiemy o tym pierwiastku ?
BoMBa AtomOwA i WoDoRoWa
Metoda projektu Chemia 2011/2012.
Energetyka i broń jądrowa.
Odkrycie promieniotwórczości
Dlaczego tak i dlaczego nie?
Promieniotwórczość naturalna
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
Promieniowanie jonizujące w środowisku
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Fizyka jądrowa Rozpady jąder, promieniotwórczość, reakcje rozszczepiania i syntezy jąder.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Izotopy promieniotwórcze
Promieniotwórczość.
Promieniotwórczość.
Promieniowanie jądrowe. Detektory promieniowania jądrowego
Energetyka jądrowa – ratunek czy zagrożenie? Katarzyna Szerszeń Wydział Mechaniczny W10 Nr indeksu:
Broń jądrowa Kamil Oleszek Szymon Miazga
Mroczna Przyszłość Ziemi
Energetyka jądrowa Wyk. Agata Niezgoda Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego.
Statystyki II wojny światowej różnie podają liczbę ofiar. Wszystkie zamykają się w przedziale 50 – 80 mln. Wyższe statystyki często uwzględniają liczbę.
BROŃ MASOWEGO RAŻENIA BROŃ JĄDROWA
Reaktory jądrowe Kamil Niedziela. Reaktor jądrowy Reaktor jądrowy jest to urządzenie, w którym są przeprowadzane z kontrolowaną prędkością.
Promieniowanie jądrowe. Detektory promieniowania jądrowego Fizyka współczesna Kamil Kumorowicz Wydział Górnictwa i Geoinżynierii Górnictwo i Geologia,
Reaktory jądrowe, wzmacniacze energii Łukasz Psykała rok akademicki 2015/2016 GiG, gr. 3 nr tematu: 22 Wydział Górnictwa i Geologii Kraków, dnia
Dlaczego boimy się promieniotwórczości?
Izotopy i prawo rozpadu
Promieniowanie jądrowe Data. Trochę historii… »8 listopada 1895 roku niemiecki naukowiec Wilhelm Röntgen rozpoczął obserwacje promieni katodowych podczas.
Przemiany jądrowe sztuczne
Reaktory termojądrowe Kraków, Autor: Paulina Plucińska ZiIP gr.2.
Reaktory termojądrowe Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology Paweł Kobielus.
Promieniowanie jądrowe Źródła promieniowania jądrowego i jego skutki.
N izotony izobary izotopy N = Z Z.
Bomba atomowa, energetyka jądrowa.
16. Elementy fizyki jądrowej
Jak należy się zachować w przypadku katastrofy jądrowej?
I wojna Światowa.
Promieniowanie Słońca – naturalne (np. światło białe)
Fizyka jądrowa. IZOTOPY: atomy tego samego pierwiastka różniące się liczbą neutronów w jądrze. A – liczba masowa izotopu Z – liczba atomowa pierwiastka.
Zapis prezentacji:

B R O Ń J Ą D R O W A

Broń jądrowa to rodzaj broni masowego rażenia wykorzystującej wewnątrz jądrową energię wydzielaną podczas łańcuchowej reakcji rozszczepienia jąder ciężkich pierwiastków (uranu i plutonu - broń atomowa) lub reakcji termojądrowej syntezy lekkich pierwiastków z wodoru - bomba wodorowa – o sile wybuchu znacznie większej niż broni atomowej. Dzięki istnieniu tej broni powstało przekonanie o możliwości pokonania przeciwnika bez użycia ogromnych armii, do zadania dużych zniszczeń na obszarze przeciwnika wystarczy samolot bombowy, pocisk artyleryjski lub rakieta przenosząca atomowe głowice bojowe.

Podstawowe rodzaje broni nuklearnej: Bomba atomowa Bomba atomowa czerpie swoją energię z reakcji rozszczepienia ciężkich jąder atomowych (np. uranu lub plutonu) na lżejsze pod wpływem bombardowania neutronami. Rozpadające się jądra emitują kolejne neutrony, które bombardują inne jądra, wywołując reakcję łańcuchową. Bomba wodorowa (termojądrowa) Zasada działania bomby wodorowej opiera się na wykorzystaniu reakcji termojądrowej, czyli łączenia się lekkich jąder atomowych (np. wodoru lub helu) w cięższe, czemu towarzyszy wydzielanie ogromnej ilości energii Brudna bomba To określenie na rodzaj broni radiologicznej, której działanie polega na rozrzuceniu materiału radioaktywnego na dużej przestrzeni za pomocą konwencjonalnej eksplozji. Powoduje to skażenie promieniotwórcze terenu

Historia broni jądrowej: Eksplozja próbna: 16 lipca 1945 – pustynia w stanie Nowy Meksyk (USA), miejsce próby nazywano nieoficjalnie Jornada del Muerto (Podróż Umarłego); Użycie bojowe: 6 sierpnia 1945 – Hiroszima (bomba Little Boy); 9 sierpnia 1945 – Nagasaki (bomba Fat Man).

Czynnikami rażenia broni jądrowej są: fala uderzeniowa, promieniowanie przenikliwe, promieniowanie cieplne (świetlne), skażenie promieniotwórcze, impuls elektromagnetyczny.

Siła rażenia jest daleko większa niż w przypadku konwencjonalnego materiału wybuchowego -- największe bomby są zdolne zniszczyć całe miasta.

Bomby atomowe zostały zastosowane dwukrotnie w celach wojennych przez armię Stanów Zjednoczonych przeciwko japońskim miastom Hirosima i Nagasaki, w trakcie II wojny światowej. Od tego czasu użyto ich około 2000 razy, jedynie w ramach testów, przeprowadzanych przez dziesięć państw:

Państwa przeprowadzające próby jądrowe: USA, Związek Radziecki, Wielka Brytania, Francja, Chińska Republika Ludowa, Indie, Pakistan i Korea Północna, RPA Izrael

Mocarstwami nuklearnymi są: Stany Zjednoczone, Rosja, Wielka Brytania, Francja, Chińska Republika Ludowa, Indie, Pakistan, Korea Północna i Izrael, którego władze nie potwierdzają ani nie zaprzeczają tym podejrzeniom. RPA wyprodukowała 4 bomby atomowe, lecz po upadku apartheidu jej arsenał nuklearny został zdeponowany w Izraelu.

Najpotężniejsza bomba atomowa: Najpotężniejszą bombą atomową była Bomba Cara. Eksplozji dokonał Związek Radziecki 30 października 1961 r. na wyspie Nowa Ziemia położonej na Morzu Arktycznym, na północnych krańcach obecnej Rosji. Była to jednostopniowa bomba termojądrowa, czyli oparta na pojedynczej fazie syntezy lekkich jąder atomowych, zainicjowanej detonacją jądrową. Miała moc 57 megaton czyli w przybliżeniu 4000 bomb zrzuconych na Hiroszimę. Mimo że zmniejszono jej moc ze względów bezpieczeństwa (Bomba Cara zaprojektowana została jako broń trójfazowa i mogła ona osiągnąć nawet 150 megaton, ale wówczas obszar objęty zniszczeniami, mimo dużego odosobnienia, objąłby kilka większych miast północnej Rosji, a opad radioaktywny zagroziłby całej Europie, toteż zrezygnowano z trzeciej fazy rozszczepiania), część skalistych wysepek, w otoczeniu których dokonano detonacji wyparowała, a sam wybuch był odczuwalny nawet na Alasce. Bomba ta nazywana była także złowieszczo "Zabójcą Miast". Bomba mogłaby zniszczyć miasto wielkości Londy

Grzyb atomowy Grzyb po wybuchu bomby atomowej tworzy się po naziemnym, powietrznym lub płytkim podziemnym wybuchu jądrowym. Jest to chmura w kształcie ogromnego grzyba składająca się z drobnych pyłów i aerozoli (w tym promieniotwórczych), powstała po wybuchu atomowym w wyniku unoszenia się nagrzanego eksplozją powietrza, wraz ze stopionymi, odparowanymi i rozproszonymi drobinami gleby i resztkami bomby powodującymi promieniotwórcze skażenie terenu. Źródłem skażenia są też izotopy promieniotwórcze powstałe w czasie rozszczepienia jądra atomowego. Grzyb może powstać po każdej silnej eksplozji, nie tylko jądrowej, a także po upadku meteoru.