Wykład II.

Slides:



Advertisements
Podobne prezentacje
Efekt Comptona Na początku XX w. Artur H. Compton badał rozpraszanie promieni Roentgena na kryształach.
Advertisements

Promieniowanie rentgenowskie
Rodzaje promieniowania elektromagnetycznego oddziaływujace na układy biologiczne
Wojciech Gawlik - Optyka, 2007/08. wykład 10 1/18 Podsumowanie W9 interferencja wielowiązkowa: niesinusoidalne prążki przykład interferencji wielowiązkowej.
Podsumowanie W2 Widmo fal elektromagnetycznych
Studia niestacjonarne II
Light Amplification by Stimulated Emission of Radiation (LASER)
Karolina Sobierajska i Maciej Wojtczak
T: Dwoista natura cząstek materii
dr inż. Monika Lewandowska
dr inż. Monika Lewandowska
PROMIENIOWANIE X, A ENERGETYCZNA STRUKTURA ATOMÓW
WYKŁAD 3 KORPUSKULARNY CHARAKTER PROMIENIOWANIA ELEKTROMAGNETYCZNEGO (efekt fotoelektryczny i efekt Comptona, światło jako fala prawdopodobieństwa) D.
Fale t t + Dt.
ŚWIATŁO.
Zjawisko fotoelektryczne
OPTYKA FALOWA.
Wykład V Laser.
Wykład XIII Laser.
Wykład XII fizyka współczesna
Wykład XI.
Wykład IX fizyka współczesna
Nośniki nadmiarowe w półprzewodnikach cd.
Wykład III Fale materii Zasada nieoznaczoności Heisenberga
FIZYKA dla studentów POLIGRAFII Kwantowa natura promieniowania
FIZYKA dla studentów POLIGRAFII Falowe własności materii
Detekcja cząstek rejestracja identyfikacja kinematyka.
Podstawy fotoniki optoelectronics. Światło promień, fala czy cząstka? cząstka - Isaac Newton ( ) cząstka - Isaac Newton ( ) fala - Christian.
Wykład 1 Promieniowanie rentgenowskie Widmo promieniowania rentgenowskiego: ciągłe i charakterystyczne Widmo emisyjne promieniowania rentgenowskiego:
T: Korpuskularno-falowa natura światła
T: Promieniowanie ciała doskonale czarnego
Temat: Dwoista korpuskularno-falowa natura cząstek materii –cd.
Fotony.
OPTYKA FALOWA.
Zjawisko fotoelektryczne
Ciało doskonale czarne
Wykład II Model Bohra atomu
Zjawiska Optyczne.
Instytut Inżynierii Materiałowej
Promieniowanie Cieplne
Dział II Fizyka atomowa.
Elementy chemii kwantowej
Zadania na sprawdzian z fizyki jądrowej.
ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Urszula Kondraciuk, Grzegorz Witkowski
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Temat: Zjawisko fotoelektryczne
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Kwantowa natura promieniowania
Zjawiska falowe.
ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Monika Jazurek
Kot Schroedingera w detektorach fal grawitacyjnych
Wyjaśnienie fotoefektu na gruncie kwantowej teorii światła Ewa Grudzień
WYKŁAD 6 uzupełnienie PĘD i MOMENT PĘDU FALI ELEKTROMAGNETYCZNEJ
Fale de broglie’a Zjawisko comptona dyfrakcja elektronów
Konrad Brzeżański Paweł Cichy Temat 35
Promieniowanie Roentgen’a
Efekt fotoelektryczny
EFEKT FOTOELEKTRYCZNY
Chemia jest nauką o substancjach, ich strukturze, właściwościach i reakcjach w których zachodzi przemiana jednych substancji w drugie. Badania przemian.
Radosław Stefańczyk 3 FA. Fotony mogą oddziaływać z atomami na drodze czterech różnych procesów. Są to: zjawisko fotoelektryczne, efekt tworzenie par,
Efekt fotoelektryczny
DYFRAKCJA ELEKTRONÓW FALE DE BROGLIE’A ZJAWISKO COMPTONA Monika Boruta Zarządzanie i Inżynieria Produkcji Grupa 1 Referat nr 2.
Promieniowanie rentgenowskie
Elementy fizyki kwantowej i budowy materii
„Stara teoria kwantów”
DUALIZM KORPUSKULARNO FALOWY
OPTYKA FALOWA.
Podsumowanie W3 Wzory Fresnela: polaryzacja , TE polaryzacja , TM r
Optyczne metody badań materiałów
Zapis prezentacji:

Wykład II

Efekt fotoelektryczny I - Q = 0 E + + + + + Aby elektron mógł opuścić metal należy dostarczyć mu pewną minimalną wartość energii którą nazywamy pracą wyjścia. Energia ta może być uzyskana np. poprzez absorpcję energii fali elektromagnetycznej. Dla większości metali wartość pracy wyjścia jest bliska 4 eV.

Efekt fotoelektryczny II

Efekt fotoelektryczny III

Efekt fotoelektryczny IV Właściwości fotoefektu Elektrony emitowane są jedynie pod wpływem „oświetlenia” falą o częstotliwości większej od pewnej minimalnej zwanej długofalową granicą fotoefektu Maksymalna wartość energii kinetycznej emitowanych elektronów jest tym większa im większa jest częstotliwość fali, nie zależy jednak od natężenia oświetlenia Natężenie fotoprądu jest proporcjonalne do wartości strumienia padającej fali Elektrony emitowane są natychmiast

Efekt fotoelektryczny V Przewidywania modelu falowego: -Dla odpowiednio dużego natężenia oświetlenia fale elekromagnetyczna o dowolnej długości powinna wywołać fotoefekt. Własność nie obserowana -Maksymalna energia kinetyczna elektronów powinna zależeć jedynie od natężenia oświetlenia, a nie od częstotliwości padającej fali. Własność nie obserowana

Efekt fotoelektryczny VI Założenie Einsteina: Fala elektromagnetyczna o częstotliwości n jest strumieniem cząstek ( fotonów) o energii E=hn , każdy. Wyjaśnienie: • W wyniku absorpcji fotonu przez elektron uzyskuje on energię E=hn. Jeżeli energia ta jest większa od pracy wyjścia A, elektron może opuścić powierzchnię katody i w układzie płynie fotoprąd. • Wraz ze wzrostem oświetlenia powierzchni katody ( tzn. wzrostem ilości fotonów padających w jednostce czasu na jednostkę powierzchni katody) rośnie ilość elektronów emitowanych z powierzchni, a tym samym wartość fotoprądu nasycenia. • Różnicę energii pomiędzy energią fotonu a pracą wyjścia elektron unosi w postaci jego energii kinetycznej.

Wilhelm Roentgen 1895

Lampa rentgenowska Roentgen 1895; prom. X : 10-12m – 10-9m

Promieniowanie ciągłe rentgenowskie

Dyfrakcja promieniowania X - I

Dyfrakcja promieniowania X -II Warunek na maksima dyfrakcyjne:

Efekt Comptona (1923) Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

foton Jeżeli mo= 0, to

Efekt Comptona - wyjaśnienie Zderzenia fotonów o pędzie pi i energii E=hc/li ze spoczywającymi elektronami. Elektron uzyskuje pęd pe, a pęd fotonu maleje do wartości ps. Długość rozpraszanej fali elektromagnetycznej zwiększa się do wartości ls=h/ps. Kierunek propagacji fali ulega zmianie o kąt q. Zmiana długości fali jest tym większa , im większy jest kąt rozproszenia. Zależność zmiany długości fali od kąta rozpraszania wyznaczyć można wykorzystując prawa zachowania pędu i energii.

Efekt Comptona – wyjaśnienie cd. ps q pi E pe