Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

„Stara teoria kwantów”

Podobne prezentacje


Prezentacja na temat: "„Stara teoria kwantów”"— Zapis prezentacji:

1 „Stara teoria kwantów”
Optyka nieliniowa WYKŁAD 1 „Stara teoria kwantów”

2 Plan wykładu promieniowanie ciała doskonale czarnego,
efekt fotoelektryczny, efekt Comptona, serie widmowe atomów, model atomu Bohra.

3 Ciało doskonale czarne
Gustaw Robert Kirchhoff ( ) Zdolność emisyjna E – energia emitowana przez ciało przez jednostkową powierzchnię w jednostce czasu dla danej długości fali. Zdolność absorpcyjna A – zdolność ciała do pochłaniania padającego na nie promieniowania elektromagnetycznego. Jest to stosunek energii pochłoniętej przez ciało do całkowitej energii padającej na nie dla promieniowania o częstości .

4 Ciało doskonale czarne
Ciało doskonale czarne – ciało całkowicie pochłaniające padające na nie promieniowanie elektromagnetyczne niezależnie od długości fali (A=1). Dla danej długości fali stosunek =E/A jest stały dla wszystkich ciał ( - funkcja Kirchhoffa) (1859r). Gęstość energii u:

5 Ciało doskonale czarne
W 1894r. Wilhelm Wien podał postać funkcji u: gdzie: (zgodność dla wysokich częstości). W 1900r. John Rayleigh wyznaczył postać u: (zgodność dla niskich częstości) .

6 Ciało doskonale czarne

7 Ciało doskonale czarne

8 Ciało doskonale czarne
Długość fali [Å]

9 Max Planck ( ) Nagroda Nobla – 1918r.

10 Ciało doskonale czarne
W 1900r. Max Planck podał postać funkcji u: gdzie h jest parametrem, który po dopasowaniu krzywej do danych eksperymentalnych wynosi: (zgodność dla całego przedziału częstości !!!).

11 Ciało doskonale czarne
Przy założeniu, że energia każdego modu pola elektromagnetycznego jest wielokrotnością pewnego (minimalnego) kwantu energii  otrzymał wyrażenie na średnią energię modu równą gdzie:

12 Ciało doskonale czarne
UWAGA Prawo Stefana-Boltzmanna: Prawo przesunięć Wiena:

13 Ciało doskonale czarne
Przykład (obliczenia szacunkowe) Powierzchnia Słońca: Odległość Ziemia-Słońce: Widmo słoneczne

14 Ciało doskonale czarne
Całkowita moc promieniowana przez Słońce: Na powierzchnię Ziemi dociera maksymalnie: Tablicowa wartość stałej słonecznej: Zapora Trzech Przełomów, Rzeka Jangcy, Chiny. Moc: MW Elektrownia Bełchatów Moc: MW

15 Efekt fotoelektryczny
W 1887r. Heinrich Hertz zaobserwował zjawisko skrócenia długości iskry elektrycznej w obwodzie wtórnym w przypadku ekranowania go przed promieniowaniem ultrafioletowym pochodzącym od iskry z obwodu pierwotnego. Obserwacja ta rozpoczęła serię badań nad zjawiskiem fotoelektrycznym.

16 Efekt fotoelektryczny
Podstawowe fakty: gdy na płytę metalową pada promieniowanie elektromagnetyczne może ona emitować elektrony (fotoelektrony), efekt fotoelektryczny występuje w przypadku, gdy na płytę pada promieniowanie o częstości większej niż pewna częstość graniczna (charakterystyczna dla danego metalu),

17 Efekt fotoelektryczny
Zależność przedstawiająca energię kinetyczną fotoelektronów od częstości padającego światła (dla litu). Robert Millikan Nagroda Nobla w 1923r.

18 Efekt fotoelektryczny
Podstawowe fakty: wartość prądu fotoelektrycznego zależy od natężenia światła, które go wywołało, energia fotoelektronów jest niezależna od natężenia źródła światła, zależy natomiast liniowo od częstości światła.

19 Efekt fotoelektryczny
W 1905r. Albert Einstein podał wyjaśnienie tego zjawiska zakładając, że fala elektromagnetyczna składa się z „cząstek” obdarzonych energią h otrzymując: W – praca potrzebna do „wyrwania” elektronu z metalu. Gdy v=vmax, wtedy W – praca wyjścia (charakterystyczna dla danego materiału)

20 Efekt Comptona Zgodnie z fizyką „klasyczną” fala elektromagnetyczna padając na np. metalową folię wywołuje drgania elektronów, które stają się źródłem wtórnego promieniowania. Intensywność promieniowania wtórnego zmienia się jak i nie zależy od długości fali padającego promieniowania.

21 Efekt Comptona Arthur Compton zauważył, że promieniowanie rozproszone pod wybranym kątem składa się z dwóch składników. Pierwszego o długości fali zgodnej z długością fali promieniowania padającego, oraz z drugiego – o długości fali przesuniętej w stosunku do długości fali promieniowania padającego o wartość zależną od kąta . Compton wyjaśnił ten efekt zakładając, że światło to strumień cząstek o energii h.

22 Efekt Comptona 0.7078Å 0.7314Å 1 foton rozproszony 0
odrzucony elektron foton padający Spektrum promieniowania rozproszonego przez grafit. Długość fali promieniowania padającego: Å.

23 Efekt Comptona Wyniki teorii Comptona: gdzie Comptonowska długość fali elektronu:

24 Serie widmowe atomów Do roku 1913 w fizyce do opisu atomu stosowano model Rutherforda. Model ten miał jednak dość poważne braki: 1. Nie potrafił wyjaśnić struktury promieniowania atomów : 2. Nie potrafił wyjaśnić stabilności atomów – elektron po czasie rzędu 10-11s powinien „spaść” na jądro na skutek wypromieniowania energii.

25 Serie widmowe atomów

26 Serie widmowe atomów Archiwum Ilustracji WN PWN SA © Wydawnictwo Naukowe PWN

27 Serie widmowe atomów Znane do roku 1913 fakty doświadczalne dotyczące serii widmowych atomu wodoru: 1. W 1885r. Balmer podał wzór empiryczny 2. W 1890r. Rydberg przeprowadził serię eksperymentów poświęconych widmom atomowym. Korzystał on z pojęcia liczb falowych

28 Serie widmowe atomów 3. Dla atomów pierwiastków alkalicznych:
gdzie R to stała Rydberga dla danego pierwiastka, zaś a i b są stałymi dla poszczególnych serii. 4. W 1908r. Ritz sformułował zasadę kombinacji (tzw. zasada kombinacji Rydberga-Ritza): Liczby falowe dowolnych linii spektralnych mogą być wyrażone jako różnice odpowiednich termów, które z kolei przez kombinację z innymi termami służyć mogą do obliczania liczb falowych innych linii tego samego widma.

29 Model atomu Bohra Niels Bohr ( ) Nagroda Nobla – 1922r.

30 Model atomu Bohra W 1913r. Niels Bohr opublikował słynne postulaty dotyczące budowy atomu: 1. Elektrony w atomie poruszają się po orbitach o promieniu r takich, aby ich moment pędu był całkowitą wielokrotnością stałej Plancka (podzielonej przez 2) 2. Elektrony poruszając się po orbitach nie wypromieniowują energii (stany stacjonarne).

31 Model atomu Bohra 3. Elektrony mogą dokonywać przejść (nieciągłych) z jednej (dozwolonej) orbity na drugą wypromieniowując różnicę energii w postaci fotonu o częstości 4. Atom może absorbować energię, dzięki czemu jego elektrony „przechodzą” na wyższą (energetycznie) orbitę.

32 Model atomu Bohra Wyniki teorii Bohra (atom wodoropodobny): - promień n-tej orbity atomu: - energia dla n-tej orbity: - liczba falowa: stała Rydberga

33 Serie widmowe atomów

34 Serie widmowe atomów


Pobierz ppt "„Stara teoria kwantów”"

Podobne prezentacje


Reklamy Google