Sterowanie – metody alokacji biegunów II

Slides:



Advertisements
Podobne prezentacje
Joanna Sawicka Wydział Nauk Ekonomicznych, Uniwersytet Warszawski
Advertisements

Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Równanie różniczkowe zupełne i równania do niego sprowadzalne
Podstawy Automatyki 2009/2010 Projektowanie układów sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. 1 Katedra Inżynierii.
Badania operacyjne. Wykład 2
Wykład no 11.
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Sterowalność i obserwowalność
Kryterium Nyquista Cecha charakterystyczna kryterium Nyquist’a
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
UKŁADY SZEREGOWO-RÓWNOLEGŁE
RÓWNOWAGA WZGLĘDNA PŁYNU
Matematyka.
Stabilność Stabilność to jedna z najważniejszych właściwości systemów dynamicznych W większości przypadków, stabilność jest warunkiem koniecznym praktycznego.
Teoria sterowania Wykład 3
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów, elementów i układów.
Sterowalność i obserwowalność
Teoria sterowania 2012/2013Sterowanie – użycie obserwatorów pełnych II Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Sterowanie.
Metody Lapunowa badania stabilności
Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność
AUTOMATYKA i ROBOTYKA (wykład 6)
Obserwatory zredukowane
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
AUTOMATYKA i ROBOTYKA (wykład 5)
Sterowanie – użycie obserwatorów pełnych
Analiza wpływu regulatora na jakość regulacji (1)
Analiza wpływu regulatora na jakość regulacji
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Podstawy automatyki 2011/2012Systemy sterowania - struktury –jakość sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż.
Wykład 22 Modele dyskretne obiektów.
Modele dyskretne obiektów liniowych
Sterowanie – działanie całkujące
Obserwowalność i odtwarzalność
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
Modelowanie – Analiza – Synteza
ISS – Synteza regulatora cyfrowego (minimalnoczasowego)
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
Sterowanie – użycie obserwatorów pełnych
Sterowanie – metody alokacji biegunów
Sterowanie – metody alokacji biegunów III
Modelowanie i identyfikacja 2013/2014 Identyfikacja rekursywna i nieliniowa I 1 Katedra Inżynierii Systemów Sterowania  Kazimierz Duzinkiewicz, dr hab.
Teoria sterowania 2013/2014Sterowanie – obserwatory zredukowane II  Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Obserwatory.
Modele dyskretne – dyskretna aproksymacja modeli ciągłych lub
Teoria sterowania SN 2014/2015Sterowalność, obserwowalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność -
Sterowanie ze sprzężeniem od stanu – metoda alokacji biegunów
Systemy dynamiczne 2014/2015Sterowalność - osiągalność  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność i obserwowalność.
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Systemy liniowe stacjonarne – modele różniczkowe i różnicowe
O ODPORNOŚCI KONWENCJONALNEGO OBSERWATORA LUENBERGERA ZREDUKOWANEGO RZĘDU Ryszard Gessing Instytut Automatyki Politechnika Śląska.
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Podstawy teorii spinu ½
Zapis prezentacji:

Sterowanie – metody alokacji biegunów II Rozważamy systemy (MIMO) System ciągły System dyskretny Przy czym: wymiar wymiar wymiar wymiar wymiar wymiar oraz rząd ; rząd

Macierz kompensacji wzmocnień statycznych (macierz sprzężenia w przód) Rozwiązanie Przypadek ciągły: Obiekt Sterownik (prawo sterowania) Macierz kompensacji wzmocnień statycznych (macierz sprzężenia w przód)

Równania opisujące system zamknięty: Stąd: Równanie stanu systemu zamkniętego i macierz systemu zamkniętego CL – close loop oraz macierz wejścia Na system działają dwie wielkości zewnętrzne - stan początkowy - sygnał wartości zadanej

Rozważamy systemy liniowe – zasada superpozycji upoważnia do rozdzielnego rozważania Przypadek ciągły – działanie regulacyjne Działanie regulacyjne ma na celu przeprowadzenie wektora stanu systemu ze stanu początkowego do stanu operacyjnego (końcowego) przy zadanych warunkach tego przejścia i/lub osłabieniu wpływu zakłóceń tak, aby osiągnąć stan ustalony Będzie to wynikać z odpowiedniego doboru macierzy Dla obliczenia macierzy przyjmujemy (zgodnie z zasadą superpozycji) Równanie Redukuje się do postaci Wymaganie minimalne – stabilność: wszystkie wartości własne macierzy w lewej półpłaszczyźnie - zapewnienie odwracalności i osiągnięcie stanu równowagi

Przypadek ciągły – działanie śledzące Działanie śledzące ma na celu uzyskanie w stanie ustalonym ( ) spełnienie warunku Równanie stanu systemu zamkniętego sprowadza się do stąd Równanie wyjścia systemu zamkniętego przyjmuje postać stąd

Przypadek p = q (wymiar p wektora sterowań u = wymiar q wektora wyjścia y) Macierz kwadratowa i jeżeli odwracalna Uwaga 1: macierz wzmocnień jest równa odwrotności wzmocnienia statycznego systemu zamkniętego (liczonego od uM do y) Równania opisujące ten system zamknięty: Stąd: Równanie stanu tego systemu zamkniętego i macierz tego systemu zamkniętego oraz macierz wejścia

Macierz transmitancji systemu opisywanego równaniem stanu określona jest U nas , , stąd Wzmocnienie statyczne

Uwaga 2: Macierz kompensacji wzmocnienia statycznego jest idealna tylko, jeżeli parametry systemu, których zależy, są dokładnie znane i nie zmieniają się w czasie. Kompensacja niespełnienia tych dwóch wymagań – dodanie członu całkującego w pętli sterowania (później !!!) Przypadek p  q (wymiar p wektora sterowań u  wymiar q wektora wyjścia y) Najczęściej: p < q Macierz nie może być określona poprzez obliczenie macierzy odwrotnej Wymaganie jednostkowości wzmocnienia określonego zależnością można zastosować jedynie do dostępnych sterowań i odpowiadających wyjść i wartości zadanych Gdy: p > q Można przeciwnie odrzucić stosowanie wymagania jednostkowości dla p – q dostępnych sterowań

Macierz kompensacji wzmocnień statycznych (macierz sprzężenia w przód) Rozwiązanie Przypadek dyskretny: Obiekt Sterownik (prawo sterowania) Macierz kompensacji wzmocnień statycznych (macierz sprzężenia w przód) Opóźnienie

Równania opisujące system zamknięty: Stąd: Równanie stanu systemu zamkniętego i macierz systemu zamkniętego CL – close loop oraz macierz wejścia

Przypadek dyskretny – działanie regulacyjne Podobnie jak w przypadku ciągłym, przyjmujemy Problem sterowania sprowadza się do określenia sekwencji wartości otrzymywanych dla z zależności , która przeprowadzi system ze stanu początkowego w stan końcowy

Przypadek dyskretny – działanie śledzące Działanie śledzące ma na celu uzyskanie w stanie ustalonym ( ) spełnienia warunku Równanie stanu systemu zamkniętego sprowadza się do stąd Równanie wyjścia systemu zamkniętego przyjmuje postać stąd

jeżeli p = q: Podobnie: macierz wzmocnień jest równa odwrotności wzmocnienia statycznego systemu zamkniętego (liczonego od uM do y) Wzmocnienie statyczne

Metody projektowania macierzy sterowania (sprzężenia zwrotnego) L Dwie grupy metod:  Metody alokowania biegunów (metody rozmieszczania biegunów) Dane jest a priori rozmieszczenie biegunów systemu zamkniętego (na płaszczyźnie s lub z) i macierz L jest wyznaczana tak, aby system zamknięty posiadał rzeczywiście takie bieguny  Metody specyficzne dla systemów MIMO

Schemat sterowania systemu ze sterowaniem od stanu Metoda alokacji biegunów Podstawy metody Metoda związana z działaniem regulacyjnym (związane z warunkiem początkowym , przy przyjęciu Nie bierze się pod uwagę równania wyjścia , gdyż brane jest ono pod uwagę przy projektowaniu macierz kompensacji wzmocnień lub Schemat sterowania systemu ze sterowaniem od stanu

Projektowanie metodą alokacji biegunów polega znalezieniu stałej macierzy sprzężenia zwrotnego (od stanu) takiej, że wartości własne systemu zamkniętego zarówno systemu ciągłego jak i dyskretnego, znajdują się w danych położeniach na płaszczyźnie s lub z Warunki istnienia macierzy Wszystkie wartości własne systemu mogą być przemieszczone do nowych dowolnych położeń wtedy i tylko wtedy, gdy system jest całkowicie sterowalny Sterowalność, warunki sterowalności, dekompozycja kanoniczna sterowalności - poprzednie wykłady System niesterowalny (niecałkowicie sterowalny) Przez przekształcenie podobieństwa znajdujemy postać dekompozycyjną kanoniczną sterowalności systemu

Dekompozycyjna postać kanoniczna sterowalności System ciągły System dyskretny gdzie - sterowalne zmienne stanu nowego wektora stanu - niesterowalne zmienne stanu nowego wektora stanu Sterowanie sprzężeniem od stanu System ciągły System dyskretny

daje system zamknięty o równaniu stanu System ciągły System dyskretny Blokowo – diagonalna macierz systemu zamkniętego ma wartości będące połączeniem wartości własnych macierzy System ciągły System dyskretny Wybór wartości własnych systemu zamkniętego nie jest w tym przypadku arbitralny, ponieważ musi on zawierać wartości własne (system ciągły) lub (system dyskretny)

Ogólna procedura wyznaczania macierzy L Przy warunku równanie stanu systemu zamkniętego Wartości własne macierzy systemu zamkniętego , które zostały wybrane, są zerami wielomianu charakterystycznego systemu zamkniętego gdzie, oznacza, że współczynnik wielomianu zależy od elementów nieznanej macierzy Arbitralny wybór wartości własnych jest równoważny arbitralnemu wyborowi współczynników wielomianu, ponieważ

Przyrównując do siebie współczynniki powyższych wielomianów, otrzymujemy układ równań () t.j. układ n równań (określone ) o p x n niewiadomych (wymiar macierzy L) Konsekwencje:  p = 1, system jednowymiarowy, układ określony, istnieje jednoznaczne rozwiązanie  p > 1, system wielowymiarowy, układ niedookreślony, nie istnieje jednoznaczne rozwiązanie

Systemy jednowymiarowe Dla p = 1 macierz redukuje się do wiersza Prawo sterowania, staje się skalarem Dla systemów niskiego rzędu (do 4 – tego) lub gdy macierz systemu zamkniętego jest rzadka (mało elementów niezerowych) układ równań () można rozwiązywać bezpośrednio dla otrzymania System dany w postaci kanonicznej sterowalności Jeżeli system dany w postaci kanonicznej sterowalności (patrz poprzednie wykłady) – macierz systemu zamkniętego CCF – Controllability Canonical Form

Przypomnienie: macierz oraz wektor Stąd

Macierz ma nadal strukturę kanoniczną sterowalności – współczynniki wielomianu charakterystycznego otrzymujemy bez obliczeń Współczynniki wielomianu charakterystycznego = elementy ostatniego wiersza macierzy systemu zamkniętego w postaci kanonicznej sterowalności ze znakiem przeciwnym Twierdzenie 1: Załóżmy, że system sterowania ciągłego, jednowymiarowego jest dany w postaci kanonicznej sterowalności z wielomianem charakterystycznym i że dla systemu zamkniętego wielomian charakterystyczny jest postulowany. Wówczas macierz dająca taki wielomian dana jest

System dany w dowolnej postaci – wzór Ackermann’a Jeżeli system jest sterowalny, to zawsze można go przekształcić do postaci kanonicznej sterowalności stosując przekształcenie podobieństwa gdzie jest wektorem stanu odpowiadającym postaci kanonicznej oraz macierz odwrotna przekształcenia jest dana wzorem gdzie wiersz jest ostatnim wierszem odwrotnej macierzy sterowalności Dla postaci kanonicznej sterowalności prawo sterowania ma postać co daje

Macierz dająca postulowany wielomian charakterystyczny Dalej wykorzystywane jest twierdzenie Cayley’a-Hamiltona Twierdzenie Cayley’a-Hamiltona: Każda macierz kwadratowa wymiaru spełnia swoje równanie charakterystyczne. Innymi słowy, jeżeli równanie charakterystyczne macierzy jest wówczas zachodzi też

Macierz podobne mają takie same wartości własne, w przypadku rozważanym są to macierze oraz Macierz te mają zatem też jednakowe wielomiany charakterystyczne Zgodnie z twierdzeniem Cayley’a-Hamiltona macierz musi zatem spełniać równanie równanie macierzy Równanie charakterystyczne macierzy daje mnożąc lewostronnie przez Podstawiając ten wynik do dostajemy twierdzenie Ackermann’a

Twierdzenie 2: Jeżeli system jest sterowalny i postulowany jest wielomian charakterystyczny systemu zamkniętego postaci to macierz sterowania należy wybrać jako gdzie jest ostatnim wierszem odwrotnej macierzy sterowalności a zatem jest określony

Przykład 1: System jednowymiarowy Zaprojektować sterowanie ze sprzężeniem zwrotnym od stanu, tzn. wyznaczyć , które są elementami macierzy sterowań Bieguny (wartości własne) systemu zamkniętego powinny być ulokowane w punktach

Opis w przestrzeni stanu Wielomian charakterystyczny systemu zamkniętego Najpierw Macierz systemu zamkniętego

Stąd wielomian charakterystyczny systemu zamkniętego Pożądany wielomian charakterystyczny systemu zamkniętego Stąd układ równań Rozwiązanie

Prawo sterowania

Dziękuję za uczestnictwo w wykładzie i uwagę

Dodatek 1 System jednowymiarowy ciągły Postać kanoniczna sterowalności Macierz sterowalności (dla dowolnej postaci)

Przekształcenia podobieństwa

Przekształcenie do postaci kanonicznej sterowalności Twierdzenie D1: Jeżeli system jest sterowalny, wówczas jest możliwe za pomocą przekształcenia przedstawić go w postaci kanonicznej sterowalności gdzie, i gdzie macierz odwrotna przekształcenia,

Przy czym wiersz jest ostatnim wierszem odwrotnej macierzy sterowalności i może zatem być obliczony z następującego układu równań to znaczy, że zachodzi również