Rozkład wariancji z próby (rozkład 2 ) Pobieramy próbę x 1,x 2,...,x n z rozkładu normalnego o a=0 i =1. Dystrybuanta rozkładu zmiennej x 2 =x 1 2 +x x n 2 jest dana następującą funkcją: gdzie (y) jest funkcją gamma Eulera (silnią uogólnioną na liczby rzeczywiste).
Zatem sam rozkład wariancji jest dany następującą funkcją
Zasada największej wiarygodności (Maximum Likelihood Principle) Mamy próbę (x 1,x 2,...,x n ) f(x, ): funkcja określająca rozkład gęstości prawdopodobieństwa, gdzie jest zestawem parametrów rozkładu. Zasada największej wiarygodności: najlepsze maksymalizuje prawdopodobieństwo wystąpienia próby. Ta zasada jest podstawą wszystkich metod estymowania parametrów rozkładu prawdopodobieństwa (a zatem i modelu matematycznego) z próby danych.
Ponieważ poszczególne elementy próby są niezależne iloraz wiarygodności funkcja wiarygodności
Przykład jakościowego porównywania dwu modeli poprzez obliczenie ilorazu wiarygodności Rzucamy monetą asymetryczną. Przypuszczamy, że albo prawdopodobieństwo wyrzucenia reszki jest 2 razy większe niż prawdopobobieństwo wyrzucenia orła (A) albo odwrotnie (B). Przypuśćmy, że w 5 rzutach otrzymaliśmy 1 raz orła i 4 razy reszkę. Wtedy:
Przykład zastosowania zasady największej wiarygodności: obliczanie wartości średniej przy założeniu, że rozkład prawdopodobieństwa jest rozkładem normalnym Jeżeli 1 = 2 =…= n =
Właściwości asymptotyczne funkcji wiarygodności Dla dużych prób
Przypadek wielowymiarowy
Dla dużych prób rozkład parametrów staje się rozkładem normalnym z macierzą wariancji-kowariancji B. Jeżeli jednak liczebność próby jest ograniczona to odchylenia od normalności rozkładu mogą być znaczne.
Obszary ufności w przestrzeni parametrów Obszar ufności definiujemy jako taki obszar w otoczeniu wartości oczekiwanej wektora parametrów i ograniczony powierzchnią o stałej gęstości prawdopodobieństwa, że prawdopodobieństwo znalezienia w nim prawdziwych wartości parametrów jest nie mniejsze niż zadana wartość (kwantyl). W jednym wymiarze mówimy o przedziale ufności. 1 2 P=g 1 2 *
W jednym wymiarze
Ogólnie dla wielowymiarowego rozkładu Gaussa