Pobieranie próby Populacja generalna: zbiór wyników wszystkich możliwych doświadczeń określonego typu. Próba n-wymiarowa: zbiór n wyników doświadczeń.

Slides:



Advertisements
Podobne prezentacje
Regresja i korelacja materiały dydaktyczne.
Advertisements

Badania statystyczne Wykłady 1-2 © Leszek Smolarek.
Test zgodności c2.
PODZIAŁ STATYSTYKI STATYSTYKA STATYSTYKA MATEMATYCZNA STATYSTYKA
Statystyka Wojciech Jawień
Zmienne losowe i ich rozkłady
Zmienne losowe i ich rozkłady
Zakład Mechaniki Teoretycznej
Elementy Modelowania Matematycznego
Estymacja przedziałowa
Test zgodności Joanna Tomanek i Piotr Nowak.
Wnioskowanie Bayesowskie
Metody wnioskowania na podstawie podprób
Wnioskowanie statystyczne CZEŚĆ III
Statystyka w doświadczalnictwie
Statystyka w doświadczalnictwie
Niepewności przypadkowe
Wykład 3 Wzór Bayesa – wpływ rozkładu a priori.
Wykład 3 Wzór Bayesa, cd.: Wpływ rozkładu a priori.
Metody Przetwarzania Danych Meteorologicznych Wykład 4
Test t-studenta dla pojedynczej próby
Próby niezależne versus próby zależne
Porównywanie średnich dwóch prób zależnych
Wykład 4. Rozkłady teoretyczne
Testy nieparametryczne
Metody Symulacyjne w Telekomunikacji (MEST) Wykład 4: Generowanie zdarzeń  Dr inż. Halina Tarasiuk p. 337, tnt.tele.pw.edu.pl.
Średnie i miary zmienności
Matematyczne techniki zarządzania - 31
Konstrukcja, estymacja parametrów
Elementy Rachunku Prawdopodobieństwa i Statystyki
dr hab. Ryszard Walkowiak prof. nadzw.
Ekonometria. Co wynika z podejścia stochastycznego?
Rozkłady wywodzące się z rozkładu normalnego standardowego
BADANIE STATYSTYCZNE Badanie statystyczne to proces pozyskiwania danych na temat rozkładu cechy statystycznej w populacji. Badanie może mieć charakter:
Hipotezy statystyczne
Elementy Rachunku Prawdopodobieństwa i Statystyki
Statystyka ©M.
Statystyka i opracowanie wyników badań
Planowanie badań i analiza wyników
Ekonometryczne modele nieliniowe
Testowanie hipotez statystycznych
Co to jest dystrybuanta?
Dopasowanie rozkładów
Statystyka medyczna Piotr Kozłowski
Metody Matematyczne w Inżynierii Chemicznej Podstawy obliczeń statystycznych.
Program przedmiotu “Opracowywanie danych w chemii” 1.Wprowadzenie: przegląd rodzajów danych oraz metod ich opracowywania. 2.Podstawowe pojęcia rachunku.
Rozkład wariancji z próby (rozkład  2 ) Pobieramy próbę x 1,x 2,...,x n z rozkładu normalnego o a=0 i  =1. Dystrybuanta rozkładu zmiennej x 2 =x 1 2.
Przenoszenie błędów (rachunek błędów) Niech x=(x 1,x 2,...,x n ) będzie n-wymiarową zmienną losową złożoną z niezależnych składników o rozkładach normalnych.
Estymatory punktowe i przedziałowe
Podstawowe pojęcia i terminy stosowane w statystyce. Rozkłady częstości Seminarium 2.
Testowanie hipotez Jacek Szanduła.
Monte Carlo, bootstrap, jacknife. 2 Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej :
Przeprowadzenie badań niewyczerpujących, (częściowych – prowadzonych na podstawie próby losowej), nie daje podstaw do formułowania stanowczych stwierdzeń.
ze statystyki opisowej
Testy nieparametryczne – testy zgodności. Nieparametryczne testy istotności dzielimy na trzy zasadnicze grupy: testy zgodności, testy niezależności oraz.
STATYSTYKA – kurs podstawowy wykład 7 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Rozkłady statystyk z próby dr Marta Marszałek Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium.
STATYSTYKA – kurs podstawowy wykład 4 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Weryfikacja hipotez statystycznych „Człowiek – najlepsza inwestycja”
WYKŁAD Teoria błędów Katedra Geodezji im. K. Weigla ul. Poznańska 2
STATYSTYKA – kurs podstawowy wykład 8 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Testy nieparametryczne
Model Poissona w ujęciu bayesowskim
Rozkład z próby Jacek Szanduła.
Statystyka matematyczna
Statystyka matematyczna
Statystyka matematyczna
Jednorównaniowy model regresji liniowej
Analiza niepewności pomiarów Zagadnienia statystyki matematycznej
Monte Carlo, bootstrap, jacknife
Zapis prezentacji:

Pobieranie próby Populacja generalna: zbiór wyników wszystkich możliwych doświadczeń określonego typu. Próba n-wymiarowa: zbiór n wyników doświadczeń. Wyniki j-tej próby przedstawiamy w postaci n-wymiarowej zmiennej losowej x(j)=(x1(j),x2(j),...,xn(j)). Wektor ten ma rozkład prawdopodobieństwa g(x)=g(x1,x2,...,xn).

Pobieranie losowe 1. g(x)=g1(x1)g2(x2)...gn(xn) (prawdopodobieństwa pobrania poszczególnych elementów próby są niezależne od siebie), 2. g1(x)=g2(x)=...=gn(x)=f(x) (poszczególne rozkłady muszą być identyczne z rozkładem gęstości dla populacji).

Dystrybuanta empiryczna (rozkład w próbie) Wn(x)=nx/n nx – liczba elementów próby takich że xj<x. Wn(x) dąży do prawdziwej dystrybuanty F(x) dla n®¥.

Przedstawianie rozkładów z próby Wykresy liniowe (jednowymiarowe) Histogramy Wykresy schodkowe Wykresy słupkowe Wykresy impulsowe Konstrukcja histogramu h(x)=n(x<y£x+Dx) h(x1,x2,...,xn)=n(x1<y1£x1+Dx1,x2<y2£x2+Dx2,..., xn<yn£xn+Dxn)

Przedstawienie wyników pomiarów oporu 100 pojedynczych oporników Wykres liniowy Histogram – wykres słupkowy Histogram – wykres schodkowy Histogram – wykres z zaznaczonymi przedziałami błędów Zależność postaci histogramów z próby dla czterech różnych szerokości przedziałów

Statystyki i estymatory Statystyka: funkcja określona na elementach próby, np. średnia. Estymator: przybliżona wartość parametru rozkładu prawdopodobieństwa wyznaczona z próby. S=S(x1,x2,...,xn) Estymator jest nieobciążony jeżeli jego wartość oczekiwana nie zależy od liczby elementów próby. Estymator jest zgodny jeżeli jego wariancja dąży do zera wraz ze wzrostem liczby elementów próby.

Obliczanie momentów centralnych zbioru punktów

Estymator wartości średniej rozkładu Estymator wartości średniej jest zatem estymatorem nieobciążonym i zgodnym.

Dygresja: błądzenie przypadkowe (random walk) stop start

Estymator wariancji rozkładu (nieobciążony i zgodny)

Estymator wariancji wartości średniej: Estymator odchylenia standardowego wartości średniej: Estymator błędu ochylenia standardowego:

Obliczanie mediany z serii pomiarów wielkości prostej Sortujemy wyniki pomiarów od najmniejszego do największego, Jeżeli liczba pomiarów (n) jest nieparzysta to mediana (xm) jest środkowym wynikiem pomiaru o numerze (n+1)/2 Jeżeli liczba pomiarów jest parzysta to mediana jest średnią arytmetyczną największego wyniku z “lewej” i najmniejszego z “prawej” połowy.

Przenoszenie błędów (rachunek błędów) Niech x=(x1,x2,...,xn) będzie n-wymiarową zmienną losową złożoną z niezależnych składników o rozkładach normalnych z wariancjami s12, s22,..., sn2. Wtedy funkcja skalarna y=f(x) tej zmiennej losowej jest zmienną losową opisywaną w przybliżeniu rozkładem normalnym o następującej wariancji:

Jeżeli elementy x są skorelowane to we wzorze występuje pełna macierz wariancji-kowariancji

Szacowanie błędu “z góry” gdzie ry jest oszacowanym maksymalnym błędem wielkości y a rxi jest oszacowanym maksymalnym błędem wielkości xi.

Rozkład wariancji z próby (rozkład c2) Pobieramy próbę x1,x2,...,xn z rozkładu normalnego o a=0 i s=1. Dystrybuanta rozkładu zmiennej x2=x12+x22+...+xn2 jest dana następującą funkcją: gdzie G(y) jest funkcją gamma Eulera (silnią uogólnioną na liczby rzeczywiste).

Zatem sam rozkład wariancji jest dany następującą funkcją

Zasada największej wiarygodności (Maximum Likelihood Principle) Mamy próbę (x1,x2,...,xn) f(x,l): funkcja określająca rozkład gęstości prawdopodobieństwa, gdzie l jest zestawem parametrów rozkładu. Zasada największej wiarygodności: najlepsze l maksymalizuje prawdopodobieństwo wystąpienia próby. Ta zasada jest podstawą wszystkich metod estymowania parametrów rozkładu prawdopodobieństwa (a zatem i modelu matematycznego) z próby danych.

Ponieważ poszczególne elementy próby są niezależne iloraz wiarygodności funkcja wiarygodności

Przykład jakościowego porównywania dwu modeli poprzez obliczenie ilorazu wiarygodności Rzucamy monetą asymetryczną. Przypuszczamy, że albo prawdopodobieństwo wyrzucenia reszki jest 2 razy większe niż prawdopobobieństwo wyrzucenia orła (A) albo odwrotnie (B). Przypuśćmy, że w 5 rzutach otrzymaliśmy 1 raz orła i 4 razy reszkę. Wtedy:

Przykład zastosowania zasady największej wiarygodności: obliczanie wartości średniej przy założeniu, że rozkład prawdopodobieństwa jest rozkładem normalnym

Właściwości asymptotyczne funkcji wiarygodności Dla dużych prób

Obszary ufności w przestrzeni parametrów Obszar ufności definiujemy jako taki obszar w otoczeniu wartości oczekiwanej wektora parametrów i ograniczony powierzchnią o stałej gęstości prawdopodobieństwa, że prawdopodobieństwo znalezienia w nim prawdziwych wartości parametrów jest nie mniejsze niż zadana wartość (kwantyl). W jednym wymiarze mówimy o przedziale ufności. P=g l2 l2 l* l1 l1

W jednym wymiarze

Ogólnie dla wielowymiarowego rozkładu Gaussa