Ewolucja Wszechświata Wykład 11

Slides:



Advertisements
Podobne prezentacje
Budowa i ewolucja Wszechświata
Advertisements

Ewolucja Wszechświata Wykład 14 Ewolucja układu słonecznego Planety pozasłoneczne Krystyna Wosińska, WF PW.
Spacer po układzie słonecznym
O obrotach ciał niebieskich
KOSMOS.
Jowisz – gazowy olbrzym
GALAKTYKI.
Układ Słoneczny.
test wyboru Ewolucja Wszechświata
Test wyboru Ewolucja Wszechświata Fizyka. zasady 40 pytań (40 x 50 sekund + 40 x 15 sekund) Każde pytanie ma 4 możliwe odpowiedzi. Odpowiedzi prawidłowych.
Ewolucja Wszechświata
Ewolucja Wszechświata Wykład 11 Ewolucja układu słonecznego
Układ Słoneczny.
Szkolny Klub Przyrodniczy „Altair”
UKŁAD SŁONECZNY.
Wykonały: Beata Wierzgoń I Klaudia Tomala
Konkurs astronomiczny
Paulina Łukaszewska Dorota Chołderna Kl.Ie
Wykonała: Magda Pokorska klasa 2M
Układ Słoneczny.
Układ słoneczny Powstanie Układu Słonecznego wyjaśnia teoria Wielkiego Wybuchu. Układ Słoneczny powstał około miliardów lat temu z obłoku gazowo.
WSZECHŚWIAT.
Planety Układu Słonecznego
Ewolucja Gwiazd.
Obiekty we Wszechświecie
Prezentacja Multimedialna
PREZENTACJA.
Układ Słoneczny.
UKŁAD SŁONECZNY.
Planety w królestwie Hanna Dulik Słońca.
KOSMOS WEJŚCIE.
Ziemia we Wszechświecie
Słońce i planety Układu Słonecznego
PLANETY.
PLANETY UKŁADU SŁONECZNEGO
Opracowała: Klaudia Kokoszka
Prezentacja jest dystrybuowana bezpłatnie
Rodzaje ciał niebieskich.
PRZYGOTOWAŁA PROJEKT:
Układ Słoneczny.
Planety Michał Szymala.
Czarna dziura Patryk Olszak.
JOWISZ JOWISZ.
Budowa Układu Słonecznego.
TAJEMNICE PLANET TAJEMNICE PLANET.
GWIAZDY , PLANETY I WIELE WIĘCEJ
Mikołaj Kopernik i Układ Słoneczny.
Wczesny Wszechświat Krzysztof A. Meissner CERN
Układ słoneczny.
Układ słoneczny Imię i nazwisko Kl. I D.
Kasia Powrózek Ksenia Preis
UKŁAD SŁONECZNY Autor: Łukasz Jeznach. Układ Słoneczny-co to? Układ Słoneczny to układ planetarny Słońca. Składa się, zaczynając od środka, z następujących.
Julia Mikoda Laura Kłapińska
Planety Gimnazjum im. Mikołaja Kopernika w Zalasewie Przygotowały:
Projekt systemowy współfinansowany przez Unię Europejską ze środków
Charakterystyka planet układu słonecznego
Wielki Wybuch Około 15 miliardów lat temu cała materia i energia, którą możemy dziś obserwować, skupiona w obszarze wielkości złotówki zaczęła się rozszerzać.
Ilustrowany atlas Układu Słonecznego
FIZYKA KLASA I F i Z Y k A.
Układ Słoneczny K. Śliwa i K. Jasnosz.
Temat: Charakterystyka Planet Układu Słonecznego Akademia Górniczo-Hunicza im. Stanisława Staszica w Krakowie AGH Uniwersity of Science and Technology.
Kosmos–Układ Słoneczny
Autorzy: Martyna Dubert Zuzia górska Daria wieland
MOJE MIEJSCE W KOSMOSIE
Prezentacja Saturna Zapraszam !
Opracował Aleksander Hebda
SŁOŃCE.
Mikołaj Kopernik (ur. 19 lutego 1473, zm
PREZENTACJA MULTIMEDIALNA
Zapis prezentacji:

Ewolucja Wszechświata Wykład 11

Układ słoneczny Słońce jest okrążane przez 9 planet, które poruszają po prawie kołowych orbitach położonych mniej więcej w jednej płaszczyźnie, która pokrywa się w zasadzie z płaszczyzną równika słonecznego; wszystkie planety poruszają się w tym samym kierunku, zgodnym z kierunkiem obrotu Słońca.

Układ słoneczny Jedynie dla Wenus i Urana kierunek ruchu wirowego jest przeciwny niż kierunek ruchu orbitalnego. Średnie odległości planet od Słońca zawierają się w granicach od około 0,4 j.a. (Merkury) do około 30 j.a. (Neptun) j.a. (jednostka astronomiczna) - średnia odległość Ziemi od Słońca (ok.150 mln km)

Układ słoneczny Planety typu Ziemi Planety typu Jowisza Merkury, Wenus, Ziemia , Mars Jowisz, Saturn, Uran, Neptun Średnice od 4,9 tys. km (Merkury) do 12,8 tys. km (Ziemia) Średnice od 48,6 tys. km (Neptun) do 142,8 tys. km (Jowisz). Zbudowane głównie z gęstej i trudno topliwej materii skalnej (krzemiany i metale) średnie gęstości: 4 - 5 g/cm3. Zbudowane głównie z najlżejszych pierwiastków (wodoru i helu) średnie gęstości: 1 - 2 g/cm3. Zawierają niewielkie jądro skaliste, dalej gruba warstwa ciekłego wodoru otoczona atmosferą wodorowo-helową (Jowisz i Saturn), lub otoczone przez grubą warstwę lodu wodnego, amoniaku i metanu (Uran i Neptun) Zawierają jądro żelazo – niklowe otoczone grubym skalistym płaszczem.

Układ słoneczny W odległości 2-4 j.a. od Słońca, między orbitami Marsa i Jowisza, krąży bardzo dużo małych ciał, zwanych planetoidami, tworząc pas główny planetoid.

Układ słoneczny Poza orbitą Neptuna, czyli poczynając od około 35 j.a. od Słońca, rozpościera się tzw. pas Kuipera – największy obiekt: Pluton. Odkryto kilkaset ciał o rozmiarach nie mniejszych niż 100 km poruszających się po prawie kołowych orbitach nachylonych pod małymi kątami do płaszczyzny ekliptyki (płaszczyzny orbity Ziemi).

Układ słoneczny Układ Słoneczny jest przypuszczalnie zanurzony w ogromnym, sferycznym obłoku, zawierającym setki miliardów drobnych ciał o budowie przypominającej jądra komet. Pas Kuipera - dysk utworzony z takich drobnych ciał, krążących mniej więcej w płaszczyźnie orbit planet - przechodzi w wewnętrzną, gęstszą część obłoku Oorta, rozszerzającą się stopniowo w sferyczny, rzadszy zewnętrzny obłok Oorta (2 lata świetlne od Słońca).

Układ słoneczny Proporcje odległości w Układzie Słonecznym.

Obłok Oorta Ciała tworzące pas Kuipera i obłok Oorta są bardzo liczne. Ocenia się, że jest ich kilkaset miliardów.

Układ słoneczny Komety (średnica: 100 tys. km) (długość: kilkaset mln. km) Komety Porowate jądro o rozmiarach rzędu kilku km składające się głownie z lodu wodnego oraz z tlenku i dwutlenku węgla, metanu i amoniaku oraz krzemianów i metali. Komety długookresowe (jednopojawieniowe) - orbity w kształcie silnie spłaszczonej elipsy lub hiperboli leżące w płaszczyźnie o dowolnym kącie nachylenia Komety krótkookresowe (okres obiegu < 200 lat) - orbity eliptyczne leżące w płaszczyźnie o małym kącie nachylenia do płaszczyzny ekliptyki. Pochodzą z pasa Kuipera Pochodzą z obłoku Oorta

Powstanie układu słonecznego Wiek Układu Słonecznego, przyjęty jako równy wiekowi najstarszych meteorytów, wynosi (4,569  0,02) mld lat. W obłoku materii międzygwiazdowej zaczęło się tworzyć zgęszczenie (być może po wybuchu supernowej). Rosnąca szybkość rotacji spowodowała utworzenie się płaskiego dysku. Po kilkudziesięciu milionach lat w centrum obłoku utworzyło się Protosłońce skupiające ponad 95% masy obłoku.

Powstanie układu słonecznego Zderzenia cząstek wirującego obłoku prowadzą do spłaszczania dysku.

Dyski protoplanetarne Dyski protoplanetarne sfotografowane przez teleskop Hubble’a

Dyski protoplanetarne Komputerowa symulacja pokazująca dysk protoplanetarny, z którego zaczynają się tworzyć gazowe olbrzymy.

Dyski protoplanetarne Latający spodek? Zdjęcie przedstawia dysk protoplanetarny wokół gwiazdy, znajdującej się w odległości 500 lat świetlnych od Ziemi. Dysk jest ustawiony do nas krawędzią i całkowicie blokuje światło gwiazdy, przez co widzimy go jako ciemną smugę w poprzek obiektu. Pył ponad i poniżej środka dysku rozprasza światło gwiazdy, tworząc w ten sposób dwie mgławice przed gwiazdą.

Powstanie układu słonecznego Silny wiatr słoneczny wywiał lżejsze pierwiastki w oddalone, zimniejsze rejony. Cięższe pierwiastki występują zarówno w gorących, jak i w zimnych rejonach.

Powstanie układu słonecznego A. U. – jednostka astronomiczna

Powstanie układu słonecznego Skupianie się ziaren pyłu w płaszczyźnie prostopadłej do osi obrotu, powodowało coraz częstsze zderzenia między nimi, które przez oddziaływania elektrostatyczne prowadziły do zlepiania się poszczególnych drobin w większe bryłki o rozmiarach rzędu milimetrów. Ich skład chemiczny zależał od miejsca powstania. Metale i krzemiany Metan, amoniak w stanie stałym

Powstanie planet Grudki materii - rozmieszczone w cienkiej, płaskiej warstwie, pokrywającej się z główną płaszczyzną dysku - były zanurzone w gazie złożonym przede wszystkim z wodoru oraz, w znacznie mniejszych ilościach, z helu, a także cięższych pierwiastków. Siły grawitacji powodowały dalsze sklejanie się grudek – po kilkuset tysiącach lat powstało wiele krążących wokół Słońca ciał o średnicach rzędu kilometra lub mniejszych – planetozymali. Planetozymale zderzając się mogły się zlepiać lub rozpadać na mniejsze części. Po paru milionach lat wykrystalizowało się w ten sposób kilka wyraźnie gęstszych centrów, wychwytujących z otoczenia coraz więcej materii - protoplanety.

Powstanie planet Budowa planet zależy od ich odległości od Słońca. Merkury - kondensacja rozpoczynała się w temperaturze około 1400 K - duże jądro, złożone głównie z żelaza (80% masy) w stanie metalicznym z domieszkami niklu. Wenus - kondensacja w temperaturze około 900 K (kondensacja magnezu i krzemu) - mniejszy od Merkurego stosunek żelaza metalicznego do krzemianów, a tym samym - mniejsza gęstość. Ziemia - kondensacja w temperaturze około 600 K (kondensacja tlenków żelaza) – gęstość jednak większa niż Merkurego z powodu dużej masy i ściśniętego grawitacyjnie jądra. Mars - kondensacja w temperaturze około 450 K (żelazo tylko w postaci siarczków i krzemianów) – brak rdzenia z metalicznego żelaza - mniejsza gęstość niż pozostałych 3 planet.

Powstanie planet Jowisz i Saturn – znacznie niższe temperatury umożliwiały kondensację lodu wodnego, a także lodów dwutlenku węgla, metanu i amoniaku. Obfitość pierwiastków lekkich zwiększyła wydajność akrecji planetarnej – wielkie masy planet. Skład chemiczny i gęstość podobne jak dla Słońca – w 80% składają się z wodoru i helu Uran i Neptun – w dalszych obszarach mgławicy gęstość obłoku planetarnego mniejsza niż w rejonach centralnych - proces akrecji nie mógł już być tak wydajny – mniejsze masy tych planet niż Jowisza i Saturna.

Powstanie planet Grawitacja planet typu Jowisza (ogromne masy) przewyższyła w swoim otoczeniu grawitację Słońca. Utworzyły się wokół nich dyski, które dały początek licznym księżycom i pierścieniom. Jowisz z czterema księżycami Saturn

Powstanie układu słonecznego „Wielkie porządkowanie” Silny wiatr słoneczny w ciągu kilkuset tysięcy lat wywiewa cząsteczki materii na peryferie układu. Oddziaływanie Jowisza odpowiedzialne za uwięzienie planetozymali, z których nie powstała planeta, między orbitami Marsa i Jowisza. Oddziaływanie Jowisza i Saturna wyrzuca pozostałe planetozymale daleko poza orbity planet. Powstaje pas planetoid o budowie skalistej – pozostałość po formacji planet typu Ziemi. Powstaje Pas Kuipera i Obłok Oorta – komety składające się z „brudnego lodu” - pozostałość po formacji planet typu Jowisza.

Powstanie układu słonecznego Obfitość planetozymali we wczesnym układzie słonecznym – epoka wielkiego bombardowania. Planetozymale często uderzały w powierzchnie planet i ich księżyców pozostawiając kratery. Powierzchnia Merkurego Kratery na Ziemi

Powstanie Księżyca Około 4,5 mld lat temu zderzenie ciała o rozmiarach Marsa z Ziemią spowodowało powstanie Księżyca. Ogromna energia zderzenia spowodowała stopienie wyrzuconych części płaszcza Ziemi - stąd na Księżycu brak wody i innych lotnych substancji. Zderzeniami można wyjaśnić niektóre anomalie, jak odwrócenie kierunku wirowania Urana, czy powstanie dużego Księżyca ziemskiego.

Nowo odkryte ciała w Układzie Słonecznym Znamy już około 800 ciał znajdujących się na bliskich peryferiach Układu Słonecznego, których średnica przekracza 100 kilometrów. Ilość znanych planetoid sięga setek tysięcy i wciąż rośnie. Planetoidy o średnicy około 1000 km i orbicie zbliżonej do Plutona (ponad 40 j.a.) - plutina Największe ciało - to odkryta w końcu 2003 roku Sedna. średnica około 1500 km bardzo wydłużona orbita – od 90 j.a. do 900 j.a.

Sedna                                                            

Sedna Wydłużona orbita Sedny sugeruje, że może ona pochodzić z obcego układu słonecznego. Animacja pokazuje hipotetyczne zderzenie układów słonecznych (autorzy: S. J. Kenyon i B. C. Bromley). kliknij

v = H·r Powtórzenie  < 1  = 1  > 1  =  /k Prawo Hubble’a Horyzont Wszechświata Eksperyment WMAP:

Większość naszego Wszechświata stanowi ciemna materia! Powtórzenie Gęstość materii świecącej: Gęstość materii barionowej: Większość naszego Wszechświata stanowi ciemna materia! Prawa dynamiki Newtona Obserwowana zależność Galaktyki wirują szybciej niż pozwalają na to prawa dynamiki i grawitacji

ν - neutrino elektronowe Powtórzenie Cząstki elementarne aromat (flavour) masa [MeV] ładunek lepton u – up górny 1.5  4.5 +2/3 e - elektron  =  0.511 -1 d – down dolny 5.0  8.5 -1/3 ν - neutrino elektronowe 0 < 3.010-6 c – charm powabny 1.0  1.4 103 μ -mion  = 2.20·10-6 s 105.7 s – strange dziwny 80  155 νμ – neutrino mionowe 0 < 0.19 t – top wierzchni 174. 103 τ - taon  = 2.91·10-13 s 1777.0 b – bottom spodni 4.0  4.5 103 ντ – neutrino taonowe 0 < 18.2

Powtórzenie Oddziaływania grawit. elektrosłabe silne (kolorowe) grawiton (?) masa [GeV] ładunek γ W+ W- Zo 80.4 80.4 91.2 +1 -1 0 g - gluon superoktet SU(3) 8 stanów koloru

Powtórzenie grawitacja oddz. silne oddz. słabe elektromagnetyzm Temperatura (K) 1038 1028 1015 1013 109 103 Czas (s) 10-43 10-35 10-11 10-6 102 Promieniowanie reliktowe Nukleosynteza Gęstość jądrowa Unifikacja oddz. elektrosłabych Plazma kwarkowo-gluonowa (10-9 s) Wielka unifikacja Inflacja Kwantowa grawitacja?

Powtórzenie Era Plancka (10-44 s) Inflacja Temperatura Czas Era Plancka (10-44 s) Inflacja Plazma kwarkowo-gluonowa (10-34 s - 10-9 s) Era hadronowa (10-9 s - 10-4 s ) Odłączenie neutrin (2 s) Era leptonowa (10-4 s - 14s) Nukleosynteza (1 s – 3 min) Era dominacji promieniowania (kilka tys. lat) Rekombinacja i odłączenie promieniowania (379 000 lat) Pierwsze gwiazdy (200 mln lat)

Powtórzenie Ewolucja gwiazdy typu Słońca 9 mld lat 1 mld lat

Powtórzenie Ewolucja gwiazdy masywnej Ewolucja gwiazdy podobnej do Słońca Brązowe karły

Powtórzenie Cykl życiowy masywnej gwiazdy

Powtórzenie - gwiazdy neutronowe

Powtórzenie - supernowe