Dzień liczby π 03.14 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679 8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196…

Slides:



Advertisements
Podobne prezentacje
Liczba" " Nocoń Dominik.
Advertisements

Wielki symbol Geometryczny liczby
Podziwu godna liczba Pi trzy koma jeden cztery jeden.
Liczba π.
Historia i zastosowanie liczby pi
Wykład no 11.
Liczba π.
K O Ł O i O K R Ą G.
Materiały pochodzą z Platformy Edukacyjnej Portalu
Materiały pochodzą z Platformy Edukacyjnej Portalu
Fermat docenił znaczenie wprowadzenia do matematyki przez matematyka francuskiego F. Viete'a oznaczeń literowych i zastosował je w geometrii. W rezultacie,
ZBIÓR LICZB RZECZYWISTYCH I JEGO PODZBIORY
NAJCIEKAWSZE „OKAZY” W ŚWIECIE LICZB
CIEKAWE LICZBY DAWID ŁUBIK.
TA NIEZWYKŁA LICZBA π.
Kwadratura koła Trysekcja kąta Podwojenie sześcianu
Koło i okrąg.
KOŁO i OKRĄG.
Liczba.
Liczba na przestrzeni wieków.
szczególnych Granice ciągów. Postaraj się przewidzieć
Sekrety matematyki Tajemnicza liczba π START.
„Z Hewelianum odkrywamy tajemnice... MATEMATYKI”
Pole koła Violetta Karolczak SP Brzoza.
Matematyka Matematyka teoretyczna (nazywana czasami matematyką czystą) jest często rozwijana bez wyraźnego związku z konkretnymi zastosowaniami. W tej.
WITAJ!!! Opracowanie: Beata Charyga.
LICZBA Alicja Pawłowska 1B.
Dane INFORMACYJNE Nazwa szkoły:
Liczba.
Liczba π Marta Pieniaka.
Ułamki dziesiętne Ułamki dziesiętne o mianowniku 10, 100, 1000, ...
Figury płaskie I PRZESTRZENNE Wykonała: Klaudia Marszał
Dane INFORMACYJNE (do uzupełnienia)
LICZBA.
Zastosowania ciągów.
WITAMY W ŚWIECIE MATEMATYKI
Liczba .
Liczba PI
Wielokąty foremne.
...czyli niezwykła historia liczby...
Liczba π 3,
KOŁA I OKRĘGI.
Zadziwiająca liczba .
8,20 1,85 123,25 9,64 LICZBY DZIESIĘTNE W ŻYCIU CODZIENNYM 2,43 11,98
Fascynująca liczba Pi.
WIELKI SYMBOL GEOMETRYCZNY.
Liczba Pi.
Niesamowita liczba π.
Stała matematyczna.
Karol Fryderyk Gauss.
Rodzaje Liczb JESZCZE SA TAKIE
Rodzaje liczb.
Liczba Pi.

Projekt edukacyjny wykonany przez uczniów klasy IIa gimnazjum: -Małgorzatę Górkę; -Amandę Szymańską; -Magdalenę Czyżniak; -Kingę Ignaczak; -Michała Pisarka;
...czyli niezwykła historia liczby...
Pi - ematy Wiersze o liczbie Pi.
Liczby całkowite Definicja Działania na liczbach całkowitych Cechy podzielności Potęga.
Liczbami naturalnymi nazywamy liczby 0,1,2,3,..., 127,... Liczby naturalne poznaliśmy już wcześniej; służą one do liczenia przedmiotów. Zbiór liczb.
Tajemnicza liczba Pi π.
Liczba π, ludolfina – stała matematyczna, która pojawia się w wielu działach matematyki i fizyki. W geometrii euklidesowej π jest równe stosunkowi obwodu.
Liczba π.
Liczba π Aleksandra Tera 6F.
W konstrukcyjnym świecie
Liczba π.
Projekt Edukacyjny W ŚWIECIE LICZB.
Liczby pierwsze: szukanie, rozmieszczenie, zastosowanie, ciekawostki. Liczby pierwsze: szukanie, rozmieszczenie, zastosowanie, ciekawostki. Kinga Cichoń.
Koła i okręgi – powtórzenie.
Przedstawiają uczniowie klasy II c
Liczba π ŚWIATOWY DZIEŃ LICZBY π marca.
Zapis prezentacji:

Dzień liczby π 03.14 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679 8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196…

Definicja Liczba π (czytaj: liczba pi), ludolfina – stała matematyczna, która pojawia się w wielu dziedzinach matematyki i fizyki. W geometrii euklidesowej π jest równe stosunkowi długości obwodu koła do długości jego średnicy. Można też zdefiniować π na inne sposoby, na przykład jako pole koła o promieniu równym 1. …4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273 7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094…

Symbol Symbol π wprowadził w 1706 roku William Jones w książce Synopsis Palmariorum Mathesos (π jest pierwszą literą greckiego słowa περίμετρον - perimetron, czyli obwód) a rozpowszechnił go później Leonhard Euler. Liczba π jest znana także jako stała Archimedesa lub ludolfina – tak została nazwana na cześć Ludolpha van Ceulena (obaj obliczyli przybliżone wartości π). …3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912 9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132…

Własności Liczba π jest liczbą niewymierną, co oznacza, że nie może być zapisana jako iloraz dwóch liczb całkowitych. Udowodnił to w roku 1761 Johann Heinrich Lambert. Co więcej, jest ona liczbą przestępną, co w 1882 roku wykazał Ferdinand Lindemann. Oznacza to, że nie istnieje wielomian o współczynnikach całkowitych, którego π jest pierwiastkiem. W rezultacie nie jest możliwe zapisanie π za pomocą skończonego zapisu złożonego z liczb całkowitych, działań arytmetycznych, ułamków oraz potęg i pierwiastków. To ostatecznie rozstrzyga, że niemożliwa jest klasyczna konstrukcja (wyłącznie przy pomocy linijki i cyrkla) kwadratu o powierzchni równej powierzchni danego koła, gdyż współrzędne wszystkich punktów, które mogą być skonstruowane w taki sposób, należą do zbioru liczb nazywanych liczbami algebraicznymi. Problem ten zwany jest kwadraturą koła i choć nie ma on ścisłego rozwiązania, to istnieją konstrukcje przybliżone. Powiązanym, również niemożliwym do rozwiązania problemem, jest problem rektyfikacji okręgu, do którego również istnieją konstrukcje przybliżone, z których za jedną z najprostszych uchodzi konstrukcja Adama Adamandego Kochańskiego. …0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235 4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859...

Historia Metoda Archimedesa Podejście starożytnych uczonych do matematyki, w szczególności do liczby π było ściśle użytkowe, nie stosowano właściwie żadnej abstrakcji, a reguły matematyczne opisywane były prostymi przykładami użytkowymi, niezbędnymi w architekturze czy księgowości. W Biblijnej Drugiej Księdze Kronik (Biblia Tysiąclecia, rozdział 4, werset 2) pochodzące z V - IV w. p.n.e. można znaleźć słowa: „Następnie sporządził odlew okrągłego "morza" o średnicy dziesięciu łokci, o wysokości pięciu łokci i o obwodzie trzydziestu łokci.”. Z opisu tego wynika, iż wykonawca owego "morza" przyjął oszacowanie π = 3. Archimedes, będący prawdopodobnie pierwszym matematykiem badającym dokładniej własności liczby π w III w. p.n.e. oszacował ją z dokładnością do dwóch miejsc po przecinku. Użył do tego metody bazującej na zależnościach geometrycznych, metody pozwalającą oszacowywać π z (teoretycznie) dowolną dokładnością, przez następne wieki była metodą najlepszą, często niezależnie od prac Archimedesa wykorzystywaną przez późniejszych matematyków. Wynikiem jego pracy było podanie przedziału, w jakim mieści się liczba π: Metoda Archimedesa …5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303 5982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989…

Historia c.d. Liu Hui, chiński matematyk żyjący w III wieku naszej ery, metodą Archimedesa dla wieloboków o 3072 bokach ustalił przybliżoną wartość liczby π na 3,1415. Zu Chongzhi, chiński cesarski astronom około 500 roku n.e. podał dwa przybliżenia liczby π - wcześniejsze - , oraz późniejsze, wynoszące , które do XV wieku było najlepszym znanym ludzkości przybliżeniem wartości liczby π (na szczególną uwagę zasługuje łatwość jego zapamiętania: 11-33-55). Wartości te zanotowano w pochodzących z tego okresu kronikach dworskich. Użył on metody Archimedesa, lecz najprawdopodobniej nie miał dostępu do jego prac. …3809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913151 5574857242454150695950829533116861727855889075098381754637464939319255060400927701671139009848824012…

Ciekawostki Liczba π ma swoich licznych wielbicieli. Obchodzą oni dzień π (14 marca) (amerykański sposób zapisu daty 3.14) oraz dzień aproksymacji π (22 lipca) (europejski sposób zapisu daty 22/7=~3.1428). Dla numerologów jest ona symbolem idealnej harmonii. Tworzone są też wierszyki i opowiadania, w których długość każdego kolejnego słowa jest równa kolejnej cyfrze w rozwinięciu dziesiętnym liczby π. …8583616035637076601047101819429555961989467678374494482553797747268471040475346462080466842590694912 9331367702898915210475216205696602405803815019351125338243003558764024749647326391419927260426992279…

Wierszyki Raz w maju, w drugą niedzielę Pi liczył cyfry pan Felek. Kuć i orać w dzień zawzięcie, Bo plonów niema bez trudu! Złocisty szczęścia okręcie, Kołyszesz... Kuć! My nie czekajmy cudu. Robota to potęga ludu! Kto w mgłę i słotę wagarować ma ochotę? Chyba ten który ogniście zakochany, odziany wytwornie Gna do nóg Bogdanki paść kornie Raz w maju, w drugą niedzielę Pi liczył cyfry pan Felek. Pomnożył, wysumował, Cyferki zanotował, Ale ma ich niewiele... …6782354781636009341721641219924586315030286182974555706749838505494588586926995690927210797509302955 3211653449872027559602364806654991198818347977535663698074265425278625518184175746728909777727938000…

Dzień liczby π w USA W USA z okazji dnia liczby π chodzi się po okręgu, je się potrawy kojarzące się z liczbą π, na przykład: pizzę, szarlotkę (ang. apple pie). …8164706001614524919217321721477235014144197356854816136115735255213347574184946843852332390739414333 4547762416862518983569485562099219222184272550254256887671790494601653466804988627232791786085784383…

…82796797668145410095388378636095068006422512520511739298489608412848862694560424196528502221066118630674427862203919494504712371378696095636437191728746776465757396241389086583264599581339047802759009946576407895126946839835259570982582262052248940772671947826848260147699090264013639443745530506820349625245174939965143142980919065925093722169646151570985838741059788595977297549893016175392846813826868386894277415599185592524595395943104997252468084598727364469584865383673622262609912460805124388439045124413654976278079771569143599770012961608944169486855584840635342207222582848864815845602850601684273945226746767889525213852254995466672782398645659611635488623057745649803559363456817432411251507606947945109659609402522887971089314566913686722874894056010150330861792868092087476091782493858900971490967598526136554978189312978482168299894872265880485756401427047755513237964145152374623436454285844479526586782105114135473573952311342716610213596953623144295248493718711014576540359027993440374200731057853906219838744780847848968332144571386875194350643021845319104848100537061468067491927819119793995206141966342875444064374512371819217999839101591956181467514269123974894090718649423196156794520809514655022523160388193014209376213785595663893778708303906979207734672218256259966150142150306803844773454920260541466592520149744285073251866600213243408819071048633173464965145390579626856100550810665879699816357473638405257145910289706414011097120628043903975951567715770042033786993600723055876317635942187312514712053292819182618612586732157919841484882916447060957527069572209175671167229109816909152801735067127485832228718352093539657251210835791513698820914442100675103346711031412671113699086585163983150197016515116851714376576183515565088490998985998238734552833163550764791853589322618548963213293308985706420467525907091548141654985946163718027098199430992448895757128289059232332609729971208443357326548938239119325974636673058360414281388303203824903758985243744170291327656180937734440307074692112019130203303801976211011004492932151608424448596376698389522868478312355265821314495768572624334418930396864262434107732269780280731891544110104468232527162010526522721116603966655730925471105578537634668206531098965269186205647693125705863566201855810072936065987648611791045334885034611365768675324944166803962657978771855608455296541266540853061434443185867697514566140680070023787765913440171274947042056223053899456131407112700040785473326993908145466464588079727082668306343285878569830523580893306575740679545716377525420211495576158140025012622859413021647155097925923099079654737612551765675135751782966645477917450112996148903046399471329621073404375189573596145890193897131117904297828564750320319869151402870808599048010941214722131794764777262241425485454033215718530614228813758504306332175182979866223717215916077166925474873898665494945011465406284336639379003976926567214638530673609657120918076383271664162748888007869256029022847210403172118608204190004229661711963779213375751149595015660496318629472654736425230817703675159067350235072835405670403867435136222247715891504953098444893330963408780769325993978054193414473774418426312986080998886874132604721569516239658645730216315981931951673538129741677294786724229246543668009806769282382806899640048243540370141631496589794092432378969070697794223625082216889573837986230015937764716512289357860158816175578297352334460428151262720373431465319777741603199066554187639792933441952154134189948544473456738316249934191318148092777710386387734317720754565453220777092120190516609628049092636019759882816133231666365286193266863360627356763035447762803504507772355471058595487027908143562401451718062464362679456127531813407833033625423278394497538243720583531147711992606381334677687969597030983391307710987040859133746414428227726346594704745878477872019277152807317679077071572134447306057007334924369311383504931631284042512192565179806941135280131470130478164378851852909285452011658393419656213491434159562586586557055269049652098580338507224264829397285847831630577775606888764462482468579260395352773480304802900587607582510474709164396136267604492562742042083208566119062545433721315359584506877246029016187667952406163425225771954291629919306455377991403734043287526288896399587947572917464263574552540790914513571113694109119393251910760208252026187985318877058429725916778131496990090192116971737278476847268608490033770242429165130050051683233643503895170298939223345172201381280696501178440874519601212285993716231301711444846409038906449544400619869075485160263275052983491874078668088183385102283345085048608250393021332197155184306354550076682829493041377655279397517546139539846833936383047461199665385815384205685338621867252334028308711232827892125077126294632295639898989358211674562701021835646220134967151881909730381198004973407239610368540664319395097901906996395524530054505806855019567302292191393391856803449039820595510022635353619204199474553859381023439554495977837790237421617271117236434354394782218185286240851400666044332588856986705431547069657474585503323233421073015459405165537906866273337995851156257843229882737231989875714159578111963583300594087306812160287649628674460477464915995054973742562690104903778198683593814657412680492564879855614537234786733039046883834363465537949864192705638729317487233208376011230299113679386270894387993620162951541337142489283072201269014…

To nie było nawet 100 tysięcy. Najdłuższe rozwinięcie ma dokładność do 2,699,999,990,000 miejsc po przecinku. Obliczenia ze sprawdzeniem zajęły 131 dni, a do obliczeń użyto komputera z procesorem Intel Core i7 (2,93 GHz) i 6 GB RAM. Sam zapis dziesiętny liczby zajmuje około 1137 GB.

Happy Day