Wykład V 1. ZZP 2. Zderzenia.

Slides:



Advertisements
Podobne prezentacje
WYKŁAD 2 I. WYBRANE ZAGADNIENIA Z KINEMATYKI II. RUCH KRZYWOLINIOWY
Advertisements

Wykład Zależność pomiędzy energią potencjalną a potencjałem
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Wykład 19 Dynamika relatywistyczna
Wykład 13 Ruch obrotowy Zderzenia w układzie środka masy
Reinhard Kulessa1 Wykład Środek masy Zderzenie elastyczne z nieruchomą cząstką 4.4 Całkowity pęd układu cząstek przy działaniu sił
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Wykład Opis ruchu planet
Ruch układu o zmiennej masie
Dynamika.
Zasady dynamiki Newtona - Mechanika klasyczna
Podstawowy postulat szczególnej teorii względności Einsteina to:
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
Dynamika Całka ruchu – wielkość, będąca funkcją położenia i prędkości, która w czasie ruchu zachowuje swoją wartość. Energia, pęd i moment pędu - prawa.
Dane INFORMACYJNE Nazwa szkoły:
KINEMATYKA Kinematyka zajmuje się związkami między położeniem, prędkością i przyspieszeniem badanej cząstki – nie obchodzi nas, skąd bierze się przyspieszenie.
DYNAMIKA.
UKŁADY CZĄSTEK.
Układy cząstek.
I prawo dynamiki Jeśli cząstka nie oddziałuje z innymi cząstkami, to można znaleźć taki inercjalny układ odniesienia w którym przyspieszenie cząstki jest.
Wykład 4 dr hab. Ewa Popko
Siły zachowawcze Jeśli praca siły przemieszczającej cząstkę z punktu A do punktu B nie zależy od tego po jakim torze poruszała się cząstka, to ta siła.
Prędkość kątowa Przyśpieszenie kątowe.
Wykład 3 dr hab. Ewa Popko Zasady dynamiki
Wykład V Zderzenia.
1.Praca 2. Siły zachowawcze 3.Zasada zachowania energii
Układ wielu punktów materialnych
Wykład III Zasady dynamiki.
Wykład IV 1. Zasada zachowania pędu 2. Zderzenia 3
BRYŁA SZTYWNA.
Wykład VI. Prędkość kątowa Przyśpieszenie kątowe.
(5-6) Dynamika, grawitacja
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Test 1 Poligrafia,
FIZYKA dla studentów POLIGRAFII Wykład 3
FIZYKA dla studentów POLIGRAFII Wykład 4
DYNAMIKA Zasady dynamiki
Nieinercjalne układy odniesienia
DYNAMIKA Oddziaływania. Siły..
Temat: Prawo ciągłości
Opracowała Diana Iwańska
Wykład 3 Dynamika punktu materialnego
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Oddziaływania w przyrodzie
Bez rysunków INFORMATYKA Plan wykładu ELEMENTY MECHANIKI KLASYCZNEJ
Z Wykład bez rysunków ri mi O X Y
Dynamika układu punktów materialnych
145.Na ciało o masie m=2kg spoczywające na gładkiej poziomej powierzchni zaczęła działać siła F=12N. Jaką prędkość uzyskało to ciało po upływie czasu 
DYNAMIKA Dynamika zajmuje się badaniem związków zachodzących pomiędzy ruchem ciała a siłami działającymi na ciało, będącymi przyczyną tego ruchu Znając.
siła cz.IV W części IV prezentacji: treść II zasady dynamiki
Kinetyczna teoria gazów
Dynamika.
MECHANIKA 2 Wykład Nr 14 Teoria uderzenia.
Ruch jednostajny prostoliniowy i jednostajnie zmienny Monika Jazurek
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii.
Temat: Energia w ruchu harmonicznym
180.Jaką prędkość uzyskało spoczywające na poziomej powierzchni ciało o masie m=1kg pod działaniem poziomej siły F=10N po przebyciu odległości s=10m? Brak.
Zasada zachowania pędu
Dynamika punktu materialnego Dotychczas ruch był opisywany za pomocą wektorów r, v, oraz a - rozważania geometryczne. Uwzględnienie przyczyn ruchu - dynamika.
Zasady dynamiki Newtona. Małgorzata Wirkowska
Dynamika punktu materialnego
Reinhard Kulessa1 Wykład Ruch rakiety 5 Ruch obrotowy 5.1 Zachowanie momentu pędu dla ruchu obrotowego punktu materialnego Wyznaczanie środka.
FIZYKA KLASA I F i Z Y k A.
Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca.
Prowadzący: dr Krzysztof Polko
4. Praca i energia 4.1. Praca Praca wykonywana przez stałą siłę jest iloczynem skalarnym tej siły i wektora przemieszczenia (4.1) Ft – rzut siły na kierunek.
6. Ruch obrotowy W czystym ruchu obrotowym każdy punkt ciała sztywnego porusza się po okręgu, którego środek leży na osi obrotu (ruch wzdłuż linii prostej.
Szczególna teoria względności
3. Siła i ruch 3.1. Pierwsza zasada dynamiki Newtona
2. Ruch 2.1. Położenie i tor Ruch lub spoczynek to pojęcia względne.
Zapis prezentacji:

Wykład V 1. ZZP 2. Zderzenia

III zasada dynamiki Newtona

III zasada dynamiki Newtona

Zasada zachowania pędu Jeśli układ cząstek jest izolowany, to całkowity pęd układu nie zmienia się bo

Zasada zachowania pędu Z III zasady dynamiki Newtona: F12 F21 1 2

Popęd Jeśli ciało oddziałuje z cząstką w pewnym przedziale czasowym (t1, t2), to całka Jest zwana popędem. Średnia siła w tym przedziale czasowym jest równa popędowi dzielonemu przez ten przedział czasowy:

Zależność między pędem a popędem W inercjalnym układzie odniesienia

Przykład Zmiana pędu: -wektorowo: -skalarnie: Piłeczka jest: -twarda ( np. golfowa),czas zderzenia Dt1 -miękka (tenisowa), czas zderzenia Dt2 FŚR jest ta sama, popęd taki sam ale Fmax jest większa dla twardej piłki, bo czas zderzenia jest krótszy. Pole pod wykresem tj. popęd

Zderzenia nieelastyczne elastyczne (maksimum strat energii kinetycznej) (nie ma strat energii kinetycznej) Zderzenia nie zmieniają całkowitego pędu układu cząstek.

Jeśli cząstki przed lub po zderzeniu mają te same prędkości to zderzenie jest nieelastyczne. Jeśli całkowita energia nie zmienia się to zderzenie jest elastyczne.

Zagadka. Jaki jest kąt miedzy kierunkami ruchu kul bilardowych pozderzeniu? Zasada zachow. pędu (1) 90° (2) j2 j1 v2f podstawiając v1f Zasada zachow. energii stąd v1i

Zderzenia sprężyste centralne-przykład v va ma mb vb Zapamiętać! Dzielimy równania przez siebie i wynik podstawiamy do równania pierwszego:

Przykład 1 ma>>mb ma<<mb

Przykład 2 ma= mb Ciało, które się poruszało zatrzymuje się : oddaje cały swój pęd i energię kinetyczną ciału spoczywającemu.

Wnioski v va ma mb vb Wniosek: vb-va - prędkość względna po zderzeniu; v – jest równa prędkości B względem A przed zderzeniem, ale ze znakiem minus; Wniosek: Prędkości względne przed i po zderzeniu są takie same co do wartości bezwzględnej, ale mają przeciwne zwroty. Powyższe jest prawdziwe nawet jeśli obydwa ciała poruszają się przed zderzeniem.

Efekt procy

Ruch ciał o zmiennej masie - rakieta Rys.a) Składowa x –owa pędu rakiety w chwili t: P1= mv Rys b) vex – prędkość wypływu gazów względem rakiety; W czasie dt masa rakiety maleje o dm; ( dm<0 ); -dm (-dm>0 – masa wypływających gazów); Składowa x-owa gazów vfuel względem obserwatora na ziemi: vfuel= v + (-vex)= v - vex

Ruch ciał o zmiennej masie - rakieta Składowa x – owa pędu wypływających gazów: (-dm)vfuel = (-dm)(v – vex) Po czasie dt, prędkość rakiety i paliwa ( nieużytego) wzrasta do v + dv, zaś masa maleje do m + dm (pamiętamy, że dm<0). Pęd rakiety wynosi wówczas: (m + dm)(v + dv) Całkowity pęd P2 rakiety i wyrzuconych gazów w chwili t + dt: P2= (m + dm)(v + dv) + (-dm)(v – vex) Rakieta wraz z paliwem stanowi układ izolowany, więc pęd całkowity musi być zachowany: P1= P2 mv = (m + dm)(v + dv) + (-dm)(v – vex) Po uproszczeniu mamy: mdv = -dmvex – dmdv ~0

Ruch ciał o zmiennej masie - rakieta mdv = -dmvex (1) Dzieląc (1) przez dt: F = mdv/dt = -vexdm/dt F nazywa się siłą ciągu. Jeśli dodatkowo działa jakaś siła zewnętrzna Przyśpieszenie rakiety: a = dv/dt = -(vex /m)dm/dt >0 Masa rakiety maleje w sposób ciągły w miarę zużywania się paliwa. Jeśli vex i dm/dt są stałe to przyśpieszenie rośnie aż do wyczerpania zapasu paliwa.

Ruch ciał o zmiennej masie - rakieta Niech vex = const, i dla t = 0 m = m0 oraz v = v0. Z (1): dv = -vex dm/m Po scałkowaniu: Równanie Ciołkowskiego