Interferencja polaryzacja polaryzator analizator

Slides:



Advertisements
Podobne prezentacje
Prawo odbicia.
Advertisements

Wojciech Gawlik - Optyka, 2007/08. wykład 12 1/17 Podsumowanie W11 Optyka fourierowska Optyka fourierowska soczewka dokonuje 2-wym. trafo Fouriera przykład.
Podsumowanie W3  E x (gdy  > 0, lub n+i, gdy  <0 )
Wojciech Gawlik - Optyka, 2006/07. wykład 12 1/12 Podsumowanie W11 Optyka fourierowska Optyka fourierowska 1. przez odbicie 1. Polaryzacja przez odbicie.
Wojciech Gawlik - Optyka, 2007/08. wykład 10 1/18 Podsumowanie W9 interferencja wielowiązkowa: niesinusoidalne prążki przykład interferencji wielowiązkowej.
prawa odbicia i załamania
Podsumowanie W2 Widmo fal elektromagnetycznych
Wojciech Gawlik - Optyka, 2007/08. wykład 13 1/23 D. naturalna Podsumowanie W12 Dwójłomność Dwójłomność x y z nxnx nyny nznz - propagacja w ośrodku dwójłomnym.
Wojciech Gawlik - Optyka, 2007/08. wykład 9 1/9 Podsumowanie W8 - Spójność światła ograniczona przez – niemonochromatyczność i niestałość fazy fizyczne.
Polaryzacja światła Polaryzacja liniowa, kołowa i eliptyczna
Rozpraszanie elastyczne światła na drobinach
Wstęp do optyki współczesnej
FALE Równanie falowe w jednym wymiarze Fale harmoniczne proste
Rozpraszanie światła.
Obrazy otrzymywane za pomocą zwierciadła wklęsłego
Dichroizm kołowy.
Fale t t + Dt.
Czym jest i czym nie jest fala?
Czym jest i czym nie jest fala?
Prezentację wykonała: Anna Jasik Instytut Fizyki Zachodniopomorski Uniwersytet Technologiczny Badanie właściwości nieliniowych światłowodów i innych tlenkowych.
DIELEKTRYKI TADEUSZ HILCZER
FIZYKA OGÓLNA III, Optyka
WYKŁAD 10 ATOMY JAKO ŹRÓDŁA ŚWIATŁA
WYKŁAD 15 INTERFEROMETRY; WYBRANE PRZYKŁADY
Chronologiczny przebieg dojrzewania idei holografii referat dyplomanta studiów inżynierskich WPPT M.Małeckiego.
Kompensatory.
Skośny efekt magnetooptyczny w ośrodkach izotropowych
Właściwości optyczne kryształów
wracamy do optyki falowej
Podsumowanie W7 nowoczesne elementy opt. (soczewki gradientowe, cieczowe, optyka adaptacyjna...) Interferencja: założenia – monochromatyczność, stałość.
1 Podstawy fotoniki Wykład 7 optoelectronics -koherencja (spójność) światła - wzmacniacz optyczny - laser.
WARUNKI BRZEGOWE. FALE NA GRANICY OŚRODKÓW
Światło spolaryzowane
Rys. 28 Bieg promieni w polaryskopie Savarta.
Fale (przenoszenie energii bez przenoszenia masy)
Demonstracje z elektromagnetyzmu (linie pola, prawo Faradaya, reguła Lentza itp..) Faraday's Magnetic.
Polaryzacja światła Fala elektromagnetyczna jest fala poprzeczną, gdyż drgające wektory E i B są prostopadłe do kierunku rozchodzenia się fali. Cecha charakterystyczną.
T: Spin elektronu. Elektron ma własny moment pędu, tzw spin (kręt).
Interferencja fal elektromagnetycznych
Metody modulacji światła
Fale oraz ich polaryzacja
ZWIĄZKI OPTYCZNIE CZYNNE
Polaryzacja światła.
Świat baniek mydlanych
INTERFERENCJA ŚWIATŁA
Holografia jako przykład szczególny dyfrakcji i interferencji
Rodzaje polaryzacji fali elektromagnetycznej
Interferencja i dyfrakcja światła
10. Pomiary kątów (klinów, pryzmatów)
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Fale świetlne Charakter elektromagnetyczny, rozchodzenie się zmiennego pola elektromagnetycznego wskutek ruchu ładunków elektrycznych. Elementarne oscylatory.
Faraday's Magnetic Field Induction Experiment
dr inż. Monika Lewandowska
Kwantowa natura promieniowania
Zjawiska falowe.
Pola i fale: Ćwiczenia 7: Fala płaska: polaryzacja, moc, energia.
WYKŁAD 9 ODBICIE I ZAŁAMANIE ŚWIATŁA NA GRANICY DWÓCH OŚRODKÓW
WYKŁAD 8 FALE ELEKTROMAGNETYCZNE W OŚRODKU JEDNORODNYM I ANIZOTROPOWYM
WYKŁAD 11 bis SPÓJNOŚĆ światła; twierdzenie van Citterta – Zernikego
WYKŁAD 12 INTERFERENCJA FRAUNHOFERA
WYKŁAD 11 ZJAWISKA DYFRAKCJI I INTERFERENCJI ŚWIATŁA; SPÓJNOŚĆ
WYKŁAD 5 OPTYKA FALOWA OSCYLACJE I FALE
Anteny i Propagacja Fal Radiowych
Fala płaska: polaryzacja, moc, energia.
Efekt fotoelektryczny
DYFRAKCJA ELEKTRONÓW FALE DE BROGLIE’A ZJAWISKO COMPTONA Monika Boruta Zarządzanie i Inżynieria Produkcji Grupa 1 Referat nr 2.
Eksperyment edukacją przyszłości – innowacyjny program kształcenia w elbląskich szkołach gimnazjalnych. Program współfinansowany ze środków Unii Europejskiej.
Podstawowe prawa optyki
Uzupełnienia nt. optyki geometrycznej
OPTYKA FALOWA.
Zapis prezentacji:

Interferencja polaryzacja polaryzator analizator

Interferencja fal dowolnie spolaryzowanych Założenia: interferują dwie fale całkowicie spolaryzowane o różnych stanach polaryzacji (1,1), (2,2), i natężeniach I1,I2, między którymi występuje pewna różnica faz  Można pokazać, że wynik interferencji nie zależy od każdego z parametrów polaryzacyjnych z osobna, a jedynie od kąta pomiędzy zredukowanymi wektorami Stokesa fal interferujących, czyli „kąta pomiędzy stanami polaryzacji” ’ Zamiast ogólnego przypadku wystarczy zatem rozpatrzyć interferencję fal liniowo spolaryzowanych o przeciwnych azymutach ±’

Interferencja fal dowolnie spolaryzowanych K – kontrast prążków interferencyjnych

Interferencja fal dowolnie spolaryzowanych Fale spolaryzowane tak samo Fale spolaryzowane ortogonalnie Prążki interferencyjne są, ich kontrast zależy od stosunku natężeń Nie ma prążków interferencyjnych

Interferencja fal własnych ośrodka dwójłomnego Założenia: liniowo spolaryzowana fala pada na ośrodek liniowo dwójłomny i dichroiczny Wzory te same co w poprzednim przypadku Nie ma prążków interferencyjnych

Analizator jako sprawca interferencji Idealny analizator eliptyczny A Taki element (układ) optyczny, który odpowiada na pytanie, w jakim stopniu analizowane światło jest spolaryzowane pod kątem azymutu α i kątem eliptyczności . Miarą tego stopnia jest stosunek natężeń światła za analizatorem i światła przed analizatorem (współczynnik transmisji); dla idealnego analizatora współczynniki te wynoszą odpowiednio: 1 gdy stan polaryzacji analizowanego światła jest taki sam jak stan własny analizatora, 0 gdy stan polaryzacji światła jest ortogonalny do stanu własnego analizatora. Ponieważ analizowane światło jest eliptycznie spolaryzowane, analizator eliptyczny jest zbudowany NAJPIERW z płytki dwójłomnej, a POTEM z polaryzatora liniowego (wstawienie płytki dwójłomnej ZA polaryzator nie zmienia natężenia światła padającego na rejestrator natężenia światła). UWAGA: o ile stan polaryzacji światła za polaryzatorem eliptycznym jest eliptyczny, o tyle za analizatorem eliptycznym jest zazwyczaj liniowy.

Natężenie światła za idealnym analizatorem eliptycznym Założenie: - padające światło: całkowicie spolaryzowane f,f - analizator: idealny analizator eliptyczny Natężenie światła za analizatorem eliptycznym Prawo Malusa

Natężenie światła za idealnym analizatorem eliptycznym Założenie: - padające światło: całkowicie spolaryzowane s=s+90°,=-f - analizator: idealny analizator eliptyczny Natężenie światła za analizatorem eliptycznym

Interferencja za analizatorem Przed analizatorem: interferujące fale mają ortogonalne stany polaryzacji, zjawisko interferencji z zerowym kontrastem prążków K=0. Za analizatorem: interferujące fale mają ten sam stan polaryzacji zjawisko interferencji fal z niezerowym kontrastem prążków K=sin2αA,f, kontrast prążków zależy od orientacji analizatora względem azymutów interferujących fal, K=1 dla kąta 2αA,f=45 stosunek natężeń fal If, Is interferujących zależy od azymutów tych fal względem azymutu analizatora

Ośrodek dichroiczny jako polaryzator, polaryzator jako ośrodek dichroiczny Założenia: padające światło: częściowo spolaryzowane oraz liniowo o kącie azymutu 0° ośrodek dwójłomny: dichroiczny liniowy o kącie azymutu 0° Nie ma takiego ośrodka, dla którego p’<p! Światło niespolaryzowane p=0 Ośrodek niedichroiczny =45°