Wpływ per[2,3,6-tri-O-(2’-metoksy)etylo]-α-cyklodekstryny na katalityczną aktywność L-tryptofan indol liazy Praca magisterska wykonana w Pracowni Węglowodanów,

Slides:



Advertisements
Podobne prezentacje
Kataliza heterogeniczna
Advertisements

Stała równowagi reakcji Izoterma van’t Hoffa
UNIWERSYTET JAGIELLOŃSKI ZAKŁAD FARMAKOKINETYKI I FARMACJI FIZYCZNEJ
WYKŁAD 7 Potencjał chemiczny
WYKŁAD 8 Rozpuszczalność ciał stałych w cieczach
Kinetyka reakcji enzymatycznych Enzymologia-9. Metody pomiaru szybkości reakcji enzymatycznych: reakcje sprzężone D -Glc + ATP D -Glc-6-P + ADP D-Glc-6-P.
„Bielenie ozonem dżinsowych wyrobów”
Prezentacja na lekcję chemii
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Środki o działaniu przeciwdrobnoustrojowym
Kinetyka reakcji enzymatycznych
Aktywność katalityczna enzymów
Określanie mechanizmów reakcji enzymatycznych
Aktywność katalityczna enzymów
Określanie mechanizmów reakcji enzymatycznych
Wykład specjalizacyjny
PRZEPROWADZONE BADANIA
Monika Woźniak Zastosowanie grupy ochronnej homoargininy w syntezie peptydów Praca magisterska wykonana w Pracowni Peptydów Promotor: prof.
Chemia Ogólna Wykład I.
1,3–DIPOLARNA CYKLOADDYCJA TLENKU MEZYTYLONITRYLU DO CHIRALNYCH OLEFIN
Addycje Grignarda do chiralnych pochodnych kwasu fenyloglioksalowego
Praca magisterska wykonana w Pracowni Peptydów
Derywatyzacja enzymatyczna w elektroforezie kapilarnej
Uniwersytet Warszawski Pracownia Radiochemii
Enzymatyczne utlenianie alkoholi pierwszorzędowych
ENZYMATYCZNE OZNACZANIE WYBRANYCH PESTYCYDÓW I  AFLATOKSYN ORAZ PRODUKTÓW ICH ROZKŁADU RADIOLITYCZNEGO Angelika Gałęzowska Kierownik pracy: prof.
Kierownik i opiekun pracy: dr inż. J. Skupińska WSTĘP Reakcje karbonylowania nitrozwiązków są doskonałą alternatywą dla reakcji z zastosowaniem toksycznego.
Każda cząsteczka mRNA ( messenger RNA, informacyjny RNA ) organizmów eukariotycznych i większości wirusów posiada na swoim końcu 5nietypową strukturę zwaną
Oddziaływanie pomiędzy modyfikowanymi cyklodekstrynami a L-tryptofan indol liazą. Praca magisterska wykonana w Pracowni Węglowodanów,
Pracownia Peptydów Wydziału Chemii UW Jarosław Stańczewski
Wpływ zmiennych środowiskowych na reakcje [4+2]cykloaddycji z użyciem chiralnych pochodnych kwasu akrylowego Karolina Koszewska Kierownik i opiekun pracy:
Próba syntezy multimerycznej formy aktywnego analogu lamininy YIGSR
Polimer fullerenowy z centrami metalicznymi jako matryca biosensorowa
SYNTEZA L-TRYPTOFANU ZNAKOWANEGO W PIERŚCIENIU I ŁAŃCUCHU BOCZNYM IZOTOPAMI WODORU I WĘGLA Paweł Dąbrowski Praca magisterska wykonana na Pracowni Peptydów.
Elektrochemiczne właściwości metalicznego renu
Uzyskanie i charakterystyka warstwy WO3
Analiza specjacyjna platyny w próbkach roślinnych
Rys. 3. Widmo NOESY wraz z przypisaniem sekwencyjnym.
Wprowadzenie Sonochemia 1 Substancje hydrofilowe w roztworach wodnych:
POLIETERY.
Obraz tworzenia się asocjatów pomiędzy konkanawaliną A i porfirynami w roztworach i w materiałach zol-żelowych Katarzyna Polska, Stanisław Radzki Wydział.
Alkohole Typ wody.
Czas wyboru nadszedł- zostań chemikiem
dr n. med. inż. Katarzyna Pytkowska1 prof. nzw dr inż. Jacek Arct1
CHEMIA ORGANICZNA WYKŁAD 7.
ENZYMY.
PRACOWNIA FIZYKOCHEMICZNYCH PODSTAW TECHNOLOGII CHEMICZNEJ
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Alkohole jednowodorotlenowe
Autorzy: Beata i Jacek Świerkoccy
Cukier - wróg czy przyjaciel?
Kinetyka chemiczna.
„Ile ma mach?” – Pomiar prędkości dźwięku. Wykonali: Paulina Oleś Krzysztof Mika Sylwester Sołtys.
Fenole.
Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Tytuł Imie i nazwisko.
Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego CZŁOWIEK – NAJLEPSZA INWESTYCJA Projekt „Naukowy zawrót.
   BARBARA KUKUŁA PRÓBY OPRACOWANIA NOWEJ METODY SYNTEZY KOMPLEKSÓW MIEDZI(II) Z ALKOHOLAMI DIAZOLOWYMI.
Amidy kwasów karboksylowych i mocznik
Główne zadanie StabilurenNu zmniejszenie aktywności enzymu ureazy.
Opracowali: Aleks i Kordian. Alkohole od strony chemii:  Alkohole są pochodnymi węglowodorów, które mają w cząsteczkach grupę funkcyjną –OH, zwaną grupą.
Synteza Heksanitrostilbenu (HNS) Agnieszka Wizner Bogumiła Łapińska Agnieszka Naporowska Rafał Bogusz Maciej Wiatrowski Opiekun pracy: dr inż. Paweł MaksimowskiZakład.
Wydział Chemiczny, Politechnika Warszawska Edyta Molga, Arleta Madej, Anna Łuczak, Sylwia Dudek Opiekun grupy: dr hab. inż. Wanda Ziemkowska Charakterystyka.
Projektowanie Procesów Technologicznych 2012/2013 Synteza heksanitrostilbenu (HNS) w reakcji utleniania trotylu, w środowisku bezwodnym. Jan Chromiński,
Szybkość i rząd reakcji chemicznej
Otrzymywanie kwasu asparaginowego jako surowca dla przemysłu farmaceutycznego w skali t/rok. Tomasz Jaskulski, Wiktor Kosiński, Mariusz Krajewski.
Szybkość reakcji i rzędowość reakcji
Wydajność reakcji chemicznych
Halogenki kwasowe – pochodne kwasów karboksylowych
Mechanizmy reakcji organicznych
Zapis prezentacji:

Wpływ per[2,3,6-tri-O-(2’-metoksy)etylo]-α-cyklodekstryny na katalityczną aktywność L-tryptofan indol liazy Praca magisterska wykonana w Pracowni Węglowodanów, Wydział Chemii, Uniwersytet Warszawski Maciej Rackiewicz Promotor: prof. dr hab. Andrzej Temeriusz Opiekun: mgr Tomasz Gubica Cele pracy: 1. Synteza i oczyszczenie czterech związków: - Heksakis-(2,3,6-tri-O-metylo)-α-cyklodekstryna - Heptakis-(2,3,6-tri-O-metylo)-β-cyklodekstryna - Oktakis-(2,3,6-tri-O-metylo)-γ-cyklodekstryna - Per[2,3,6-tri-O-(2’-metoksy)etylo]-α-cyklodekstryna 2.Zbadanie wpływu jaki wywiera dodatek otrzymanych związków na aktywność enzymu L-tryptofan indol liazy w reakcjach enzymatycznych Wstęp Cyklodekstryny są to cykliczne oligosacharydy zawierające 6, 7 lub 8 jednostek α-1,4-D-glukopiranozowych nazwane odpowiednio α, β i γ-cyklodekstrynami. Cyklodekstryny zostały odkryte i wyizolowane przez Villiersa w 1891 roku w reakcji degradacji skrobi. Cząsteczka cyklodekstryny ma kształt ściętego stożka o otwartych obu końcach gdzie drugorzędowe grupy hydroksylowe przy C-2 i C-3 zorientowane są przy grubszym końcu stożka natomiast pierwszorzędowe grupy hydroksylowe (C-6) przy cieńszym końcu. Wnętrze cząsteczki jest hydrofobowe natomiast powierzchnia zewnętrzna jest hydrofilowa dzięki czemu cyklodekstryny mają zdolność kompleksowania związków organicznych w swojej wnęce. Właściwości te zainspirowały wielu naukowców do badań nad wykorzystaniem tych związków w wielu dziedzinach chemii. Schematy reakcji: Badania enzymatyczne: Charakterystyczna zdolność cyklodekstryn do inkludowania wielu związków organicznych wewnątrz hydrofobowej wnęki znalazła zastosowanie w badaniach nad enzymami i reakcjami enzymatycznymi. Prowadzone były badania nad wykorzystaniem pochodnych cyklodekstryn jako imitatorów enzymów1 oraz jako dodatków do reakcji enzymatycznych2,3. W swojej pracy zbadałem jaki wpływ wywiera obecność zsyntetyzowanej przeze mnie per[2,3,6-tri-O-(2’-metoksy)etylo]-α-cyklodekstryny na aktywność enzymu tryptofanazy katalizującej reakcję hydrolitycznego rozkładu L-tryptofanu do indolu, kwasu pirogronowego oraz amoniaku w obecności fosforanu 5’ –pirydoksalu jako kofaktora. Spodziewałem się że pochodna cyklodekstryny będzie inhibitorem reakcji. Inhibicję odwracalną w reakcjach enzymatycznych można podzielić na kompetycyjną i niekompetycyjną. W pierwszym przypadku inhibitor wiąże się z centrum aktywnym enzymu i w ten sposób współzawodniczy z substratem hamując reakcję. W przypadku inhibitora kompetycyjnego możliwe jest także wiązanie się z substratem. Stopień inhibicji w obecności inhibitora kompetycyjnego zależy od stężenia inhibitora i substratu. Inhibicja niekompetycyjna polega na wiązaniu się inhibitora z wolnym enzymem lub z kompleksem enzym-substrat. Inhibitor niekompetycyjny nie wiąże się z enzymem w miejscu aktywnym i dlatego stopień inhibicji nie zależy od stężenia substratu. Zależy on natomiast od stężenia inhibitora. Reakcje przeprowadziłem dla trzech różnych stężeń per[2,3,6-tri-O-(2’-metoksy)etylo]-α-cyklodekstryny (1, 2 i 3 mM). W każdym przypadku przeprowadziłem 6 reakcji ze zmieniającym się stężeniem substratu (L-tryptofanu). Przed rozpoczęciem eksperymentu substrat inkubowałem z per[2,3,6-tri-O-(2’-metoksy)etylo]-α-cyklodekstryną przez 24 h. Reakcje prowadziłem w środowisku buforu fosforanowego o pH=8. Przebieg reakcji obserwowałem mierząc absorbancję przy pomocy spektrofotometru UV-VIS co 60 sekund w ciągu 20 minut trwania każdej z reakcji. Otrzymane wyniki (zależność szybkości reakcji od stężenia substratu) wykorzystałem do wyznaczenia stałych inhibicji reakcji ( Ki ) w równaniu Michaelisa – Mentena. Identyczne pomiary wykonałem dla reakcji z dodatkiem heksakis-(2,3,6-tri-O-metylo)-α-cyklodekstryny. Przeprowadziłem również pomiary reakcji enzymatycznych L-tryptofanu bez dodatku pochodnych cyklodekstryn oraz wyznaczyłem parametry KM , Vmax . Inhibicja kompetycyjna K’M = KM(1 + [ I ]/Ki) Inhibicja niekompetycyjna V’max = Vmax/(1+ [ I ]/Ki) Synteza Zastosowana przeze mnie metoda syntezy została opisana przez Szejti i współpracowników1. 1.Permetylowane α, β i γ-cyklodekstryny Pierwszym krokiem w syntezie było deprotonowanie wszystkich grup wodorotlenowych przy pomocy wodorku sodu (czterokrotny nadmiar w stosunku do ilość grup OH). Następnym krokiem było wprowadzenie odczynnika elektrofilowego jakim jest jodek metylu (siedmiokrotny nadmiar w stosunku do ilości grup OH). Następnie prowadziłem reakcję przez 24 h w temp. pokojowej. Użytym rozpuszczalnikiem był DMF. Surowy produkt oczyściłem przy pomocy chromatografii kolumnowej. Strukturę otrzymanych związków potwierdziłem przez wykonanie widm 1HNMR, 13CNMR oraz MS. Wydajności reakcji syntezy permetylowanych α, β i γ-cyklodekstryny wyniosła odpowiednio: 81%, 61%, 92%. 2.Per[2,3,6-tri-O-(2’-metoksy)etylo]-α-cyklodekstryna Syntezę wykonałem metodą opisaną w poprzednich reakcjach. W tym wypadku odczynnikiem elektrofilowym był 1-bromo-2-etoksyetan (BrCH2CH2OCH3) Zastosowałem siedmiokrotny nadmiar bromku w stosunku do ilości grup wodorotlenowych. Reakcję prowadziłem przez 48 h w temp. 70°C w DMF. Produkt oczyściłem przy użyciu chromatografii kolumnowej. Strukturę otrzymanych związków potwierdziłem przez wykonanie widm 1HNMR oraz MS. Wydajność wyniosła 86%. Reakcja rozkładu L-tryptofanu do indolu, kwasu pirogronowego i amoniaku katalizowana przez L-tryptofan indol liazę. Wyniki K1i [mM] K2i [mM] KM [mM] Vmax [mM/min] Heksakis-(2,3,6-tri-O-metylo)- α-cyklodekstryna 1,12 7,31 Per[2,3,6-tri-O-(2’-metoksy)etylo]-α-cyklodekstryna 0,24 3,39 L-tryptofan - 3,47x10-1 3,77X102 Wnioski: Z otrzymanych wartości stałych inhibicji wynika, że w przypadku obu związków mamy do czynienia z inhibicją typu mieszanego czyli kompetycyjną oraz niekompetycyjną. Literatura: 1. J. Szejtli, A. Liptak, I. Jodál, P. Fugeti, P. Nánási, A. Neszmélyi, Starch – Stärke 32, No. 5, 165-169, 1980. 2. R. Breslow, S.D. Dong, Chem. Rev. 1998, 98, 1997-2011. 3. A. Ghanem, V. Schurig, Tetrahedron: Asymmetry 12, 2001, 2761-2766. 4. T. Gubica, E. Boroda, A. Temeriusz, M. Kańska, J. Incl. Phenom. Macrocycl. Chem. 2006, 54, 283-288. K1i – stała inhibicji kompetycyjnej K2i – stała inhibicji niekompetycyjnej KM – stała Michaelisa Vmax – prędkość maksymalna reakcji bez inhibitora V’max – prędkość maksymalna reakcji z inhibitorem [ I ] – stężenie inhibitora