Właściwości średniej arytmetycznej

Slides:



Advertisements
Podobne prezentacje
PODZIAŁ STATYSTYKI STATYSTYKA STATYSTYKA MATEMATYCZNA STATYSTYKA
Advertisements

w szkole średniej Wykonały: Alicja Makowska i Beata Karwowska
W dalszej części zajęć wyróżniać będziemy następujące
Analiza współzależności zjawisk
CIĄGI.
Badania marketingowe na rynkach produktów sektora wysokich technologii Wybrane metody analizy danych.
Podsumowanie wykładu 1. Najpełniejszą charakterystyką wybranej zmiennej jest jej rozkład.
Skale pomiarowe – BARDZO WAŻNE
PODSUMOWANIE WIADOMOŚCI ZE STATYSTYKI
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Charakterystyki opisowe rozkładu jednej cechy
Jak mierzyć asymetrię zjawiska?
Graficzna prezentacja danych Wykład 2 dr Małgorzata Radziukiewicz
Jak mierzyć zróżnicowanie zjawiska? Wykład 4. Miary jednej cechy Miary poziomu Miary dyspersji (zmienności, zróżnicowania, rozproszenia) Miary asymetrii.
Miary jednej cechy Miary poziomu Miary dyspersji Miary asymetrii (skośności)
Analiza współzależności
ANALIZA STRUKTURY SZEREGU NA PODSTAWIE MIAR STATYSTYCZNYCH
Miary położenia Miary położenia opisują umiejscowienie typowych wartości cechy statystycznej na osi liczbowej.
MIARY ZMIENNOŚCI Główne (wywołujące zmienność systematyczną)
Krzysztof Jurek Statystyka Spotkanie 4. Miary zmienności m ó wią na ile wyniki są rozproszone na konkretne jednostki, pokazują na ile wyniki odbiegają
Statystyka w doświadczalnictwie
(dla szeregu szczegółowego) Średnia arytmetyczna (dla szeregu szczegółowego) Średnią arytmetyczną nazywamy sumę wartości zmiennej wszystkich jednostek.
BIOSTATYSTYKA I METODY DOKUMENTACJI
Dane informacyjne: Gimnazjum im. Marii Skłodowskiej-Curie
Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych  Dr inż. Halina Tarasiuk
Średnie i miary zmienności
Co to są rozkłady normalne?
Opracowała: Joanna Wasiak
Testy nieparametryczne
Konstrukcja, estymacja parametrów
Kurs specjalistyczny dla pielęgniarek, mgr Adam Dudek, PWSZ Nysa 2007
dr Dariusz Chojecki, Instytut Historii i Stosunków Międzynarodowych US
Elementy Rachunku Prawdopodobieństwa i Statystyki
Testy nieparametryczne
„Człowiek - najlepsza inwestycja”
Elementy Rachunku Prawdopodobieństwa i Statystyki
dla klas gimnazjalnych
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół nr 5 w Szczecinku i Zespół Szkół w Opalenicy ID grupy: 97/41_mf_g2 i 97/71_mf_g1 Kompetencja:
Statystyka ©M.
Podstawy statystyki, cz. II
Statystyka i opracowanie wyników badań
Analiza struktury na podstawie parametrów klasycznych i pozycyjnych
Co to jest dystrybuanta?
Przedmiot: Ekonometria Temat: Szeregi czasowe. Dekompozycja szeregów
Wnioskowanie statystyczne
STATYSTYKA Pochodzenie nazwy:
1 informatyka +. 2 TYTUŁ: Podstawowe statystyki wykorzystywane do analizowania danych AUTOR: A. Brzostek, P. Królikowski.
METODY WYODRĘBNIANIA KOSZTÓW STAŁYCH I ZMIENNYCH
Podstawowe pojęcia i terminy stosowane w statystyce
Statystyczna analiza danych w praktyce
Jak mierzyć asymetrię zjawiska? Wykład 5. Miary jednej cechy  Miary poziomu  Miary dyspersji (zmienności, zróżnicowania, rozproszenia)  Miary asymetrii.
Statystyczna analiza danych
Statystyczna analiza danych
Statystyczna analiza danych
Średnia arytmetyczna, mediana i dominanta
Statystyczna analiza danych
ze statystyki opisowej
SKALA CIĄGŁA I SKOKOWA.
Grupowanie danych statystycznych „ Człowiek – najlepsza inwestycja”
Halina Klimczak Katedra Geodezji i Fotogrametrii Akademia Rolnicza we Wrocławiu WYKŁAD 2 ZMIENNE GRAFICZNE SKALA CIĄGŁA I SKOKOWA.
Parametry rozkładów Metodologia badań w naukach behawioralnych II.
STATYSTYKA – kurs podstawowy wykład 11
Jak mierzyć zróżnicowanie zjawiska?
Rozwiązywanie równań pierwszego stopnia z jedną niewiadomą.
Małgorzata Podogrodzka, SGH ISiD
Statystyka matematyczna
Radosław Hołówko Konsultant: Agnieszka Pożyczka
Jednorównaniowy model regresji liniowej
MIARY STATYSTYCZNE Warunki egzaminu.
Ankieta statystyki.
Zapis prezentacji:

Właściwości średniej arytmetycznej

Właściwości średniej arytmetycznej Wartość średniej arytmetycznej nie ulega zmianie, jeśli wszystkie wagi pomnożymy przez liczbę stałą c:

Właściwości średniej arytmetycznej Jeżeli zbiorowość (populację) liczącą n elementów podzielimy na r podgrup (podpopulacji) o liczebnościach w1, w2, w3,…….wr, wówczas średnia arytmetyczna całej zbiorowości (populacji) jest równa średniej ważonej średnich arytmetycznych ( gdzie j = 1,2,…r) podgrup (podpopulacji), z wagami wj :

Właściwości średniej arytmetycznej Jeśli zmniejszymy każdy wariant cechy xi o stałą c, to średnia arytmetyczna też ulegnie zmniejszeniu o stałą c:

Właściwości średniej arytmetycznej Jeśli pomnożymy każdy wariant cechy xi przez stałą c, to nowa średnia arytmetyczna będzie c – krotnością średniej pierwotnej:

Właściwości średniej arytmetycznej Jeśli od każdego wariantu xi odejmiemy średnią arytmetyczną wówczas suma tych różnic jest równa zeru: Powyższą własność formułujemy często w innej formie: suma odchyleń od średniej arytmetycznej jest równa zeru:

Właściwości średniej arytmetycznej Średnia arytmetyczna zawiera się między krańcowymi wartościami cechy:

Właściwości średniej arytmetycznej Średnia arytmetyczna zachowuje sumę wartości cechy:

Właściwości średniej arytmetycznej Wartość liczbowa średniej arytmetycznej ma takie samo miano jak badana cecha

Właściwości średniej arytmetycznej Suma kwadratów odchyleń wartości zmiennych badanej cechy od średniej arytmetycznej rozkładu jest najmniejsza Oznacza to, że suma kwadratów odchyleń poszczególnych wartości zmiennych badanej cechy od jakiejkolwiek innej wartości zmiennej rozkładu, różnej od średniej, będzie zawsze większa

Ograniczenia w stosowaniu średniej arytmetycznej

Niejednokrotnie średnia arytmetyczna nie może być uznana za wielkość reprezentatywną dla całego danego zbioru, w sensie wyrażania tendencji centralnej, jej wartość poznawcza jest niewielka (lub nawet żadna), a niekiedy wprowadza po prostu w błąd

Ograniczenia w stosowaniu średniej arytmetycznej W przypadku, gdy przedziały klasowe są otwarte (górny i dolny lub jeden z nich). a) gdy liczebności przedziałów otwartych są stosunkowo nieliczne, można je zamknąć i umownie ustalić środek przedziału; b) gdy udział liczebności przedziałów otwartych w ogólnej sumie liczebności jest znaczny, rezygnujemy z obliczania średniej

Ograniczenia w stosowaniu średniej arytmetycznej B. Gdy największe liczebności skupiają się zdecydowanie wokół najniższych lub najwyższych wartości cechy (szereg jest skrajnie asymetryczny).

Ograniczenia w stosowaniu średniej arytmetycznej C. Wartość poznawcza średniej jest żadna, wówczas, gdy ustalamy średnią ze zbiorów niejednorodnych

Ograniczenia w stosowaniu średniej arytmetycznej D. Obliczanie średniej mija się z celem również w tych szeregach, które dają rozkłady z kilkoma skupiskami dominującymi (są to tzw. szeregi wielomodalne) Rys. Rozkład dwumodalny

W większości przypadków rozkłady cech mierzalnych (zwanych zmiennymi) charakteryzują się pewną tendencja centralną, która polega na tym, że w miarę wzrostu liczebności (częstości) zmniejszają się różnice pomiędzy wartościami zmiennej a wartością centralną. Rozkłady, które nie odpowiadają temu warunkowi, nie powinny być opisywane za pomocą wartości średniej.

rozkłady skrajnie asymetryczne

Średnia geometryczna

Średnią geometryczną n liczb jest pierwiastek stopnia n z iloczynu tych liczb. Wykorzystywana jest do badania zbiorowości, w których wartości jednostek są przedstawiane w liczbach względnych

Mediana

Mediana odpowiada środkowi zbioru danych, w którym to zbiorze wartości cechy uporządkowano kolejno od najmniejszej do największej (czyli wg. rosnącej wartości cechy).

jeśli liczba obserwacji n jest liczbą nieparzystą, mediana jest wartością środkowej obserwacji: jeśli liczba obserwacji n jest liczbą parzystą, mediana jest średnią z dwóch wartości środkowych obserwacji:

medianę M(X) można zdefiniować jako taką wartość cechy, że prosta pionowa przechodząca przez nią dzieli obszar pod krzywą na dwie równe części w praktyce medianę obliczamy w sytuacji, gdzie jedna lub kilka wartości leży daleko od środka zbioru mediana ma często zastosowanie w ekonomii w rozkładach dochodów Uwaga!!! mediana ma sens tylko wtedy, gdy zbiór danych jest uporządkowany rosnąco lub malejąco.

Właściciel musi decydować rozsądnie, z jakimi filmami nabyć taśmy. przykład Sprzedaż filmowych kaset video ma ograniczenia czasowe (na ekrany wchodzą coraz to nowsze filmy i „stare” szybko schodzą z ekranów kin). Właściciel musi decydować rozsądnie, z jakimi filmami nabyć taśmy. W tej sytuacji miary: - średnia i mediana – nie będą jemu pomocne. Zamiast tego, właścicielowi potrzebna jest wiedza na temat, które filmy są najbardziej popularne i cieszą się największym zainteresowaniem, a zatem które filmy prawdopodobnie będą sprzedawać się najlepiej.

Dominanta (moda)

charakterystyczne własności dominanty dominanta znajduje zastosowanie wówczas, gdy chcemy jedną liczbą wyrazić wartość cechy najbardziej typową i najczęściej występującą istnieje możliwość stosowania dominanty w przypadku analizy cech mierzalnych i niemierzalnych dla cechy niemierzalnej dominantą jest ten wariant cechy, która ma największą częstość występowania w badanej zbiorowości dominanta jest jedyną miarą przeciętną, która można wyznaczyć dla cech niemierzalnych

charakterystyczne własności dominanty jest również możliwe - dla dużych liczebności i odpowiadającym im różnym wartościom - więcej niż jedna dominanta (moda); zbiór z 2-oma modami nazywamy dwumodalnym, zbiory z 3-ema modami trzymodalnymi; zbiory mające powyżej 3 mód zwą się wielomodalnymi; w diametralnie różnym przypadku, gdy każda wartość w zbiorze występuje tylko raz – zbiór nie ma mody.

w przypadku, kiedy wartości zmiennej pogrupowane są w szereg rozdzielczy sposób wyznaczanie dominanty (mody) w oparciu o jej definicję nie może być zastosowany analizując liczebności poszczególnych klas można określić przedział wartości cechy, który dominuje w badanej zbiorowości. Nie wiadomo jednak, która wartość dominuje w badanej zbiorowości dominantę (modę) wyznacza się wówczas w sposób przybliżony poprzez interpolację jej wartości z przedziału klasowego

metoda obliczania dominanty Metoda interpolacyjna polega na obliczeniu dominanty według wzoru: lub: gdzie: Dx0 - dolna granica przedziału dominującego; n D - liczebność (częstości względne) przedziału dominującego; nD-1 - liczebność (częstości względne) przedziału poprzedzającego przedział dominujący; nD+1 - liczebność (częstości względne) przedziału następującego po przedziale dominującym; hD - rozpiętość przedziału dominującego.

obliczając dominantę (modę) należy pamiętać o tym, że: Uwaga!!! obliczając dominantę (modę) należy pamiętać o tym, że: w szeregu rozdzielczym może występować jedno wyraźnie zaznaczone maksimum (tzn. rozkład empiryczny jest jednomodalny); przedział dominanty (mody) oraz dwa sąsiadujące z nim przedziały muszą mieć takie same rozpiętości (szerokości); jeśli dominanta w szeregu rozdzielczym występuje w skrajnych przedziałach klasowych, wówczas nie oblicza się jej wg. wzoru interpolacyjnego

Średnie pozycyjne wyższych rzędów

W statystyce często używane są: percentyle – dzielimy całkowitą liczebność na 100 części decyle – całkowitą liczebność dzielimy na 10 części kwartyle – całkowitą liczebność dzielimy na 4 części

k-ty percentyl zbioru danych uporządkowanych rosnąco jest to wartość x mająca tę własność, że k procent liczebności zbioru leży na lub poniżej wartości x

Kwartyle Kwartyle to takie wartości cechy Q1, Q2 i Q3 , że ¼ obserwacji leży poniżej Q1 , ¼ powyżej Q3 , ¼ obserwacji leży między Q1 a medianą a ¼ obserwacji leży między medianą a Q3 . Wielkość Q1 zwana jest kwartylem dolnym a Q3 kwartylem górnym.