Maria Zatorska.

Slides:



Advertisements
Podobne prezentacje
Prawo odbicia.
Advertisements

Obraz w zwierciadle kulistym wypukłym
. Obrazy w zwierciadle kulistym wklęsłym Zwierciadło kuliste wklęsłe
Kolory w naszym życiu-a co do tego ma światło białe?
Karolina Sobierajska i Maciej Wojtczak
OPTYKA.
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Obrazy otrzymywane za pomocą zwierciadła wklęsłego
1.
DANE INFORMACYJNE ID grupy: AsGo02 Zjawiska optyczne w atmosferze,
Fale t t + Dt.
Zjawisko fotoelektryczne
Dane INFORMACYJNE (do uzupełnienia)
WYKŁAD 15 INTERFEROMETRY; WYBRANE PRZYKŁADY
WYKŁAD 2 ZWIERCIADŁA (płaskie, wypukłe i wklęsłe)
Fale - przypomnienie Fala - zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(wt- kx) A – amplituda fali kx – wt – faza fali k –
Opracowała Paulina Bednarz
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Polaryzacja światła Fala elektromagnetyczna jest fala poprzeczną, gdyż drgające wektory E i B są prostopadłe do kierunku rozchodzenia się fali. Cecha charakterystyczną.
Soczewki – konstrukcja obrazu Krótkowzroczność i dalekowzroczność.
T. Wróblewski, K. Szerement, G.P. Karwasz Instytut Fizyki, Pomorska Akademia Pedagogiczna, Słupsk, ul. Arciszewskiego 22b Każdy, kto rozpoczyna.
Optyka geometryczna.
ID grupy: 97/2 _MF_G2 Kompetencja: MATEMATYCZNO - FIZYCZNA Temat projektowy: ZJAWISKA OPTYCZNE Semestr II / rok szkolny : 2009 / 2010.
„eSzkoła – Moja Wielkopolska” „Sztuka fotografowania, czyli aparat fotograficzny od środka” Projekt współfinansowany ze środków  Unii Europejskiej w.
h1h1 h2h2 O1O1 O2O2 P1P1 P2P2 1 r1r1 2 r2r2 x y Korzystając ze wzoru Który był słuszny dla małych kątów ( co w przypadku soczewek będzie możliwe dla promieni.
Dane INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH
Dane INFORMACYJNE Gimnazjum im. Mieszka I w Cedyni ID grupy: 98_10_G1 Kompetencja: Matematyczno - fizyczna Temat projektowy: Ciekawa optyka Semestr/rok.
DANE INFORMACYJNE Nazwa szkoły: ZSP im. Gen. Wł. Andersa w Złocieńcu
Nazwa szkoły: Gimnazjum nr 58 im. Jana Nowaka Jeziorańskiego w Poznaniu ID grupy: 98/62_MF_G2 Opiekun Aneta Waszkowiak Kompetencja: matematyczno- fizyczna.
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Główną częścią oscyloskopu jest Lampa oscyloskopowa.
Temat: Płytka równoległościenna i pryzmat.
Zjawiska optyczne Natalia Kosowska.
DANE INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Gastronomicznych
Optyka Joanna Sado Tomasz Stanek
Dosłownie oznacza więc „rysowanie światłem".
Dane INFORMACYJNE ID grupy: B3 Lokalizacja: Białystok
Autorstwo: grupa 2 Stargard Szczeciński I Liceum Ogólnokształcące
Eksperymenty, doświadczenia, pokazy fizyczne
Optyka geometryczna Dział 7.
Soczewki Soczewką nazywamy ciało przezroczyste, ograniczone dwiema powierzchniami, z których przynajmniej jedna nie jest płaska.
Jak powstają obrazy w zwierciadłach wklęsłych?
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Temat: Zjawisko fotoelektryczne
Optyka Czyli nauka o świetle..
Dodatek 1 F G A B C D E x y f h h’ F
Przygotowanie do egzaminu gimnazjalnego
„Wszechświat jest utkany ze światła”
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Monika Jazurek
Opad atmosferyczny mający zazwyczaj postać kryształków lodu, które w powiększeniu mają kształt gwiazdy 6- ramiennej, łącząc się ze sobą tworzą płatki.
DLACZEGO ŚNIEG JEST BIAŁY ?
PROMIENIOWANIE CIAŁ.
EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY I WEWNĘTRZNY
Promieniowanie Roentgen’a
ZJAWISKO CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA ŚWIATŁA Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego.
Fale elektromagnetyczne
WYKORZYSTANIE ZASAD OPTYKI W NASZYM ŻYCIU. Soczewka Jest to proste urządzenie optyczne składające się z jednego lub kilku bloków przezroczystego materiału.
Zwierciadło płaskie. Prawo odbicia i załamania światła. Całkowite wewnętrzne odbicie. Autorzy: dr inż. Florian Brom, dr Beata Zimnicka Projekt współfinansowany.
Dyspersja światła białego wyk. Agata Niezgoda Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego.
Efekt fotoelektryczny
podsumowanie wiadomości
Eksperyment edukacją przyszłości – innowacyjny program kształcenia w elbląskich szkołach gimnazjalnych. Program współfinansowany ze środków Unii Europejskiej.
1.
1.
Przyrzady Optyczne Przyrządy optyczne, są to urządzenia optyczne służące do zmieniania drogi promieni świetlnych, a czasem także promieni niektórych.
Zapis prezentacji:

Maria Zatorska

Prezentacja z fizyki Optyka

Soczewki         Najstarsze przyrządy optyczne skonstruowano ok. 2000 lat temu. Źródła greckie i rzymskie opisują m. in., jak używać zaokrąglonego szklanego naczynia wypełnionego wodą do otrzymywana powiększonych obrazów różnych przedmiotów. Szklane soczewki powstały znacznie później. Wykorzystywano je m. in. do korygowania wad wzroku oraz przy konstrukcji takich urządzeń, jak: lunety, mikroskopy, aparaty fotograficzne, kamery.    Soczewki to ciała przezroczyste (zbudowane najczęściej ze szkła), ograniczone z obu stron powierzchniami kulistymi lub z jednej strony powierzchnią kulistą, a z drugiej płaską.    Każdy z fragmentów soczewki zachowuje się podobnie jak pryzmat i załamuje przechodzące przezeń promienie świetlne. Soczewka wypukła odpowiada dwom pryzmatom złączonym podstawami. Schematycznie przedstawiamy ją tak, jak na rysunku.

Soczewki skupiające

Soczewki rozpraszające   Poniższe rysunki przedstawiają różne rodzaje soczewek wklęsłych.                                                                                                                                                

Załamanie światła 1      Jeśli światło pada na granicę dwóch przezroczystych ośrodków, to zwykle jego część odbija się (zgodnie z prawem odbicia), a część wchodzi do drugiego ośrodka. Mówimy, że światło załamuje się

Załamanie światła 2     Promień świetlny po przejściu z powietrza do wody zmienia kierunek. Mówimy, że światło uległo załamaniu. Zjawisko załamania światła występuje wtedy, gdy światło przechodzi z jednego ośrodka przezroczystego do drugiego.   

Załamanie światła 3  Wiązka światła biegnie wzdłuż promienia tarczy, a matowa przednia ścianka półkrążka ułatwia obserwację biegu promienia w szkle.    Wprowadźmy następujące oznaczenia: n - prostopadła do powierzchni padania, wystawiona w punkcie padania P,     - kąt padania (między promieniem padającym a prostą n),  - kąt załamania (między promieniem załamanym a prostą n).                                                                                                                                                                                                                                                                                                                                                          

                                                                                                                                                                                                               Jeżeli światło przechodzi z ośrodka, w którym poruszało się z mniejszą szybkością, do ośrodka, w którym rozchodzi się z większą szybkością, kąt załamania jest większy od kąta padania .                                                                                                                                           

        Zwiększając kąt padania, doprowadzamy do sytuacji, w której promień będzie się ślizgał po powierzchni zetknięcia obu ośrodków.                                                                                                                                           

Światłowody     Światłowody mogą przenosić ogromną ilość informacji (rozmowy telefoniczne, wiadomości wysyłane faksem, połączenia internetowe itp.) w bardzo krótkim czasie. Szkło, z którego wykonane jest włókno światłowodu jest tak czyste, że sygnały świetlne mogą w nim wędrować niemal bez straty energii, a zatem bez konieczności stosowania odpowiednich wzmacniaczy.     Włókno światłowodu wykonane jest z dwóch koncentrycznych warstw szkła: cylindrycznego rdzenia i otaczającego go płaszcza. Każda warstwa wykonana jest z innego rodzaju szkła. Światło ulega wielokrotnemu całkowitemu wewnętrznemu odbiciu na granicy warstw    Ponieważ włókna szklane światłowodów maja bardzo małe średnice (są cieńsze od ludzkiego włosa), można je wyginać w dowolny sposób bez groźby złamania i przerwania światłowodu.                                                                                                                                                                                                                                                                                                        

Zwierciadła kuliste Oprócz zwierciadeł płaskich używane są również zwierciadła kuliste (są nimi np. zwierciadła stosowane na skrzyżowaniach ulic, w lusterkach i reflektorach samochodów, w lusterkach dentystycznych). Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Jako zwierciadło może być wykorzystana powierzchnia kuli. W związku z tym rozróżniamy zwierciadła kuliste:         * wklęsłe - gdy jako zwierciadło wykorzystujemy wewnętrzną powierzchnię kuli         * wypukłe - gdy jako zwierciadło wykorzystujemy zewnętrzną powierzchnię kuli.    Każde zwierciadło kuliste posiada:         * środek krzywizny - jest nim środek kuli (O),         * promień krzywizny - jest nim promień kuli (r),         * oś główną - którą jest prosta przechodząca przez środek krzywizny (O) i środek czaszy zwierciadła (S).                                                                                                                                                                                                                                                             

                                                                                                                                                                                                                        Promienie świetlne równoległe do osi głównej po odbiciu od powierzchni zwierciadła kulistego wklęsłego przechodzą przez jeden punkt zwany ogniskiem zwierciadła. Ognisko zwierciadła

Ogniskowa zwierciadła    Ognisko to leży na osi głównej zwierciadła. Odległość ogniska od środka czaszy zwierciadła nazywamy ogniskową                                                                                                                                                                                                                             

Skupienie światła                                                                                                                                                                                                                Zjawisko skupiania światła słonecznego za pomocą zwierciadeł wklęsłych wykorzystano w wielu współczesnych urządzeniach technicznych. W tzw. kuchenkach słonecznych skupione promienie świetlne służą do podgrzewania żywności, którą umieszcza się w ognisku zwierciadła. Podobne rozwiązanie zastosowano w piecach przemysłowych. W Mont Louis, we francuskich Pirenejach zbudowano wielopiętrową konstrukcją złożoną z małych zwierciadeł, odpowiednio ustawionych, tworzącą gigantyczne zwierciadło wklęsłe. W ognisku takiego zwierciadła uzyskuje się temperaturę do 3000oC, w której możliwa jest termiczna obróbka wielu metali.                                                                                                                                             

Prostoliniowe rozchodzenie się światła    O prostoliniowym rozchodzeniu się światła możesz przekonać się również, wykorzystując tzw. kamerę otworkową. Powstawanie cienia

Światło rozchodzi się w próżni z szybkością 300000 km/s Światło rozchodzi się w próżni z szybkością 300000 km/s. Mimo tej olbrzymiej drogi ze Słońca na Ziemię światło potrzebuje aż 8,3 minuty. Żadne poruszające się ciało nie może osiągnąć szybkości światła.

Zjawisko fotoelektryczne   Zjawisko fotoelektryczne znalazło szeroki zastosowanie w technice. Jednym z przykładów zastosowania jest fotokomórka                                                                                                  Tworzy ją próżniowa bańka szklana, której część wewnętrznej powierzchni pokryta jest cienką warstwą metalu o małej pracy wyjścia (np. cezu).     Z tej powierzchni, zwanej fotokatodą, emitowane są elektrony (fotoelektrony). Drugą elektrodę (zwaną anodą) stanowi metalowa kulka lub pętla. Do wnętrza bańki promieniowanie wpada przez przezroczyste okienko i pada na fotokatodę. Następnie z niej emisja elektronów, które są przyciągane przez dodatnio naładowaną anodę. W obwodzie takim, jak na rysunku następuje przepływ prądu elektrycznego.                                                                                               

Przygotujemy elektroskop, płytkę cynkową (dobrze oczyszczoną np Przygotujemy elektroskop, płytkę cynkową (dobrze oczyszczoną np. papierem ściernym) oraz lampę łukową. Płytkę cynkową mocujemy do elektroskopu - łącząc ją z jego listkami lub wskazówką. Po naelektryzowaniu płytki dodatnio skierujemy na nią światło z lampy łukowej. Eksperyment powtórzymy po naładowaniu płytki ujemnie. Tym razem płytka naelektryzowana ujemnie nie traci już elektronów, bez względu na to, jak intensywny jest strumień światła. Ponieważ szkło pochłania promieniowanie nadfioletowe, można na podstawie przeprowadzonego doświadczenia wnioskować, że w przypadku cynku ta właśnie część widma fal elektromagnetycznych wywołuje zaobserwowane zjawisko, zwane zjawiskiem fotoelektrycznym.                                                                                        

Przejście światła przez pryzmat    Po przejściu światła białego przez pryzmat obserwujemy nie tylko odchylenie światła do pierwotnego kierunku, ale również jego rozszczepienie na barwy. Na ekranie otrzymamy szereg barw przechodzących w sposób ciągły jedna w drugą: od czerwonej poprzez pomarańczową, żółtą, zieloną, niebieską aż do fioletowej. Ten zestaw barw nazywamy widmem ciągłym światła białego. Taką gamę kolorów, od czerwieni do fioletu możemy taż zaobserwować, gdy światło słoneczne przenika przez szklane przedmioty (np. kryształowy flakon) lub przez krople deszczu (tworząc tęczę).  

Dziekuję za obejrzenie prezentacji