Metody Numeryczne Ćwiczenia 3 Metody wyznaczania pierwiastków równań nieliniowych w zadanym przedziale. Zadania
Bisekcja Wylicz metodą bisekcji pierwiastek f(x) w podanym przedziale. Podaj wyniki iteracji następujących parametrów (a, b, f(a), f(b)) f(x)=exp(x)-0.20 w przedziale <-2.0 ; 0.0> Teoria Warunek końcowy =0,001
Metoda siecznych Wylicz metodą siecznych pierwiastek f(x) w podanym przedziale. Podaj wyniki iteracji następujących parametrów (x, f(x), x) f(x)=exp(x)-0.20 w przedziale <-2.0 ; 0.0> Teoria Warunek końcowy =0,001
Metoda stycznych Newtona Teoria Wylicz metodą stycznych Newtona pierwiastek f(x) w podanym przedziale. Podaj wyniki iteracji następujących parametrów (x, f(x), f’(x), x): f(x)=exp(x)-0.20 w przedziale <-2.0 ; 0.0> Warunek końcowy =0,001
Następne zajęcia Iteracyjne metody rozwiązywania równań nieliniowych: Iteracja prosta Iteracja z relaksacją Iteracja układu równań