Regresja wieloraka.

Slides:



Advertisements
Podobne prezentacje
Regresja i korelacja materiały dydaktyczne.
Advertisements

Excel Narzędzia do analizy regresji
KORELACJA I REGRESJA WIELOWYMIAROWA
BADANIE KORELACJI ZMIENNYCH
Statystyka Wojciech Jawień
Analiza współzależności zjawisk
BUDOWA MODELU EKONOMETRYCZNEGO
Elementy Modelowania Matematycznego
Analiza współzależności
Dane dotyczące sprzedaży wody mineralnej
Analiza współzależności
1 Dane dotyczące sprzedaży wody mineralnej Tygodnie Ilość sprzedanej wody mineralnej Y (litrów) Cena jednego litra X (płn.) 1101,3 262,0 351,7 4121,5 5101,6.
Metody ekonometryczne
Metody ekonometryczne
Statystyka w doświadczalnictwie
Uogólniony model liniowy
Dzisiaj na wykładzie Regresja wieloraka – podstawy i założenia
BIOSTATYSTYKA I METODY DOKUMENTACJI
Mgr Sebastian Mucha Schemat doświadczenia:
Analiza korelacji.
Niepewności przypadkowe
Wykład 14 Liniowa regresja
Linear Methods of Classification
Korelacje, regresja liniowa
ANALIZA KORELACJI LINIOWEJ PEARSONA / REGRESJA LINIOWA
Analiza współzależności dwóch zjawisk
Korelacja, autokorelacja, kowariancja, trendy
Testowanie hipotez statystycznych
Analiza współzależności cech statystycznych
dr hab. Ryszard Walkowiak prof. nadzw.
i jak odczytywać prognozę?
Elementy Rachunku Prawdopodobieństwa i Statystyki
Rozkłady wywodzące się z rozkładu normalnego standardowego
Analiza wariancji jednoczynnikowa.
Irena Woroniecka EKONOMIA MENEDŻERSKA - dodatek do W2
Prognozowanie z wykorzystaniem modeli ekonometrycznych
Modelowanie ekonometryczne
Prognozowanie (finanse 2011)
Zagadnienia regresji i korelacji
Elementy Rachunku Prawdopodobieństwa i Statystyki
Kilka wybranych uzupelnień
Konwergencja gospodarcza
Przedmiot: Ekonometria Temat: Szeregi czasowe. Dekompozycja szeregów
Dopasowanie rozkładów
Ekonometria stosowana
D. Ciołek EKONOMETRIA – wykład 3
Regresja liniowa Dany jest układ punktów
METODY WYODRĘBNIANIA KOSZTÓW STAŁYCH I ZMIENNYCH
Ekonometria Metody estymacji parametrów strukturalnych modelu i ich interpretacja dr hab. Mieczysław Kowerski.
Regresja liniowa. Dlaczego regresja? Regresja zastosowanie Dopasowanie modelu do danych Na podstawie modelu, przewidujemy wartość zmiennej zależnej na.
Statystyczna analiza danych
Model ekonometryczny Jacek Szanduła.
Korelacje dwóch zmiennych. Korelacje Kowariancja.
Treść dzisiejszego wykładu l Weryfikacja statystyczna modelu ekonometrycznego –błędy szacunku parametrów, –istotność zmiennych objaśniających, –autokorelacja,
Modele nieliniowe sprowadzane do liniowych
STATYSTYKA – kurs podstawowy wykład 11
Treść dzisiejszego wykładu l Metoda Najmniejszych Kwadratów (MNK) l Współczynnik determinacji l Koincydencja l Kataliza l Współliniowość zmiennych.
„Gospodarka i Społeczeństwo”   Zielone miejsca pracy w krajach Unii Europejskiej – studium empiryczne z zastosowaniem analizy regresji Barbara.
Wstęp do regresji logistycznej
KORELACJA I REGRESJA WIELOWYMIAROWA
EKONOMETRIA W3 prof. UG, dr hab. Tadeusz W. Bołt
Regresja wieloraka – służy do ilościowego ujęcia związków między wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (objaśnianą) Regresja.
Regresja wieloraka – bada wpływ wielu zmiennych objaśniających (niezależnych) na jedną zmienną objaśnianą (zależą)
Jednorównaniowy model regresji liniowej
Model ekonometryczny z dwiema zmiennymi
MNK – podejście algebraiczne
Analiza współzależności zjawisk
MIARY STATYSTYCZNE Warunki egzaminu.
Analiza kanoniczna - stanowi uogólnienie liniowej regresji wielorakiej na dwa zbiory zmiennych tzn. dla zmiennych zależnych i niezależnych. Pozwala badać.
Korelacja i regresja liniowa
Zapis prezentacji:

Regresja wieloraka

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować na wykresie rozrzutu)

Regresja wieloraka Estymacja najmniejszych kwadratów: Program tak dobierze równanie tej linii, że suma kwadratów odległości punktów na wykresie rozrzutu od linii regresji będzie minimalna.

Równanie regresji Linia prosta w przestrzeni dwuwymiarowej (na płaszczyźnie): Y=a+b*X Stała- wyraz wolny, nachylenie- współczynnik regresji. W przypadku wielowymiarowym (mamy do czynienia z więcej niż jedną zmienną niezależną) linia regresji nie może już być tak prosto przedstawiona wizualnie w przestrzeni dwuwymiarowej. Postać równania: Y=a+b1*X1+b2*X2+...+bp*Xp

Równanie regresji Y=a+b1*X1+b2*X2+...+bp*Xp Współczynniki regresji (b) reprezentują niezależne wkłady każdej ze zmiennych niezależnych do predykcji zmiennej zależnej.

Równanie regresji Y=a+b1*X1+b2*X2+...+bp*Xp Kierunek zależności od poszczególnej zmiennej ustala się na podstawie znaku wartości współczynnika regresji (b). Jeśli b ma wartość dodatnią- związek jest dodatni (wraz ze wzrostem zmiennej X rośnie wartość Y) Jeśli b jest ujemne- związek jest negatywny b=0 - między zmiennymi nie ma zależności

Równanie regresji Wartości przewidywane a wartości resztowe Linia regresji wyraża najlepszą predykcję zmiennej zależnej (Y) przy danych zmiennych niezależnych (X). Zazwyczaj mamy do czynienia z odchyleniami punktów pomiarowych od linii regresji Wartość resztowa: odchylenie danego punktu na wykresie od linii regresji (czyli od jego wartości przewidywanej)

Równanie regresji Wariancja resztowa a R2 Im mniejsza wariancja wartości resztowych wokół linii regresji w stosunku do zmienności ogólnej, tym lepsza jakość predykcji.

Równanie regresji Wariancja resztowa a R2 Brak zależności pomiędzy zmiennymi X i Y - stosunek zmienności resztowej Y do zmienności całkowitej równa się 1,0. X i Y ściśle (w sensie zależności funkcyjnej) zależne od siebie- zmienność resztowa równa się 0 i taki stosunek również 0,0. Najczęściej: stosunek zmienności resztowej Y do zmienności całkowitej zawiera się gdzieś pomiędzy tymi wartościami ekstremalnymi.

Równanie regresji Wariancja resztowa a R2 1 minus ten stosunek= R2 (współczynnik determinacji)- wskaźnik jakości dopasowania modelu do danych Bliski 1,0 wskazuje, że prawie cała zmienność zmiennej zależnej może być objaśniona przez zmienne niezależne włączone do modelu).

Równanie regresji Wariancja resztowa a R2 1 minus ten stosunek= R2 (współczynnik determinacji)- wskaźnik jakości dopasowania modelu do danych Interpretacja: Gdyby wartość R2 wynosiła 0,4 wówczas wiadomo byłoby, że wariancja wartości Y wokół linii regresji wynosi 1-0,4 razy pierwotna wariancja Y (40% pierwotnej zmienności Y zostało wytłumaczone przez regresję, a 60% pozostało w zmienności resztowej).

Równanie regresji Interpretacja współczynnika korelacji R Stopień, w jakim dwie lub więcej zmiennych objaśniających (niezależnych lub X) jest powiązanych ze zmienną objaśnianą (zmienna zależna Y), wyrażany jest przez wartość współczynnika korelacji R (pierwiastek kwadratowy z R2) . W regresji wielorakiej R może przyjmować wartości pomiędzy 0 i 1.

Równanie regresji Założenia i ograniczenia założenie braku obserwacji odstających (normalności rozkładów zmiennych) założenie liniowości założenie normalności reszt wybór liczby zmiennych

Równanie regresji Założenia i ograniczenia Założenie braku obserwacji odstających: należy przeanalizować pod tym kątem wykresy P-P. histogramy, przeprowadzić testy normalności.

Równanie regresji Założenia i ograniczenia Założenie liniowości: założenie, że zależność między zmiennymi jest liniowa. Rada: przeanalizowanie pod tym kątem dwuwymiarowych wykresów rozrzutu badanych zmiennych.

Równanie regresji Założenia i ograniczenia Założenie normalności reszt: reszty (różnice między wartością obserwowaną a obliczoną z równania regresji) podlegają rozkładowi normalnemu.

Równanie regresji Założenia i ograniczenia Wybór liczby zmiennych: Zaleca się, aby brać do analizy przynajmniej około 10 do 20 razy więcej przypadków niż występuje w niej zmiennych. W przeciwnym wypadku oceny linii regresji będą bardzo niestabilne i będą się silnie zmieniać wraz ze wzrostem liczby przypadków.