Sterowanie – użycie obserwatorów pełnych

Slides:



Advertisements
Podobne prezentacje
Sterowanie – metody alokacji biegunów II
Advertisements

Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Systemy liniowe stacjonarne – modele wejście – wyjście (splotowe)
Metody Sztucznej Inteligencji 2012/2013Zastosowania systemów rozmytych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Zastosowania.
WYKŁAD 6 ATOM WODORU W MECHANICE KWANTOWEJ (równanie Schrődingera dla atomu wodoru, separacja zmiennych, stan podstawowy 1s, stany wzbudzone 2s i 2p,
Podstawy Automatyki 2009/2010 Projektowanie układów sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. 1 Katedra Inżynierii.
Wykład no 11.
Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model.
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Sterowalność i obserwowalność
Kryterium Nyquista Cecha charakterystyczna kryterium Nyquist’a
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły;
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania.
Transformacja Z (13.6).
Stabilność Stabilność to jedna z najważniejszych właściwości systemów dynamicznych W większości przypadków, stabilność jest warunkiem koniecznym praktycznego.
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów, elementów i układów.
Sterowalność i obserwowalność
Teoria sterowania 2012/2013Sterowanie – użycie obserwatorów pełnych II Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Sterowanie.
Metody Lapunowa badania stabilności
Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność
AUTOMATYKA i ROBOTYKA (wykład 6)
Obserwatory zredukowane
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
AUTOMATYKA i ROBOTYKA (wykład 5)
Sterowanie – użycie obserwatorów pełnych
Modelowanie i Identyfikacja 2011/2012 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Warstwowe.
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Miary efektywności/miary dobroci/kryteria jakości działania SSN
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Wykład 22 Modele dyskretne obiektów.
Sterowanie – działanie całkujące
Obserwowalność i odtwarzalność
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
Modelowanie – Analiza – Synteza
ISS – Synteza regulatora cyfrowego (minimalnoczasowego)
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
Sterowanie – metody alokacji biegunów
Sterowanie – metody alokacji biegunów III
Modelowanie i identyfikacja 2013/2014 Identyfikacja rekursywna i nieliniowa I 1 Katedra Inżynierii Systemów Sterowania  Kazimierz Duzinkiewicz, dr hab.
Teoria sterowania 2013/2014Sterowanie – obserwatory zredukowane II  Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Obserwatory.
Modele dyskretne – dyskretna aproksymacja modeli ciągłych lub
Teoria sterowania SN 2014/2015Sterowalność, obserwowalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność -
Sterowanie ze sprzężeniem od stanu – metoda alokacji biegunów
Systemy dynamiczne 2014/2015Sterowalność - osiągalność  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność i obserwowalność.
Systemy dynamiczne 2014/2015Odpowiedzi – systemy liniowe stacjonarne  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System.
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Systemy liniowe stacjonarne – modele różniczkowe i różnicowe
Podstawy automatyki I Wykład /2016
O ODPORNOŚCI KONWENCJONALNEGO OBSERWATORA LUENBERGERA ZREDUKOWANEGO RZĘDU Ryszard Gessing Instytut Automatyki Politechnika Śląska.
Teoria sterowania Wykład /2016
Podstawy automatyki I Wykład /2016
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Zapis prezentacji:

Sterowanie – użycie obserwatorów pełnych Zastosowanie sprzężenia zwrotnego od stanu wymaga dostępu do wektora stanu w przypadku systemu ciągłego lub w przypadku systemu dyskretnego Nie zawsze jest to możliwe – konieczna staje się rekonstrukcja stanu w oparciu o wszystko, co jest dostępne Dwa punkty widzenia zasługują na rozważenie 1. Czysto deterministyczny 2. Stochastyczny

1. Deterministyczne podejście Rozważać będziemy jak poprzednio dwa przypadki Przypadek ciągły Przypadek dyskretny Dlaczego np. nie wyznaczyć wektora z równania wyjścia bo oraz są dostępne? Powody: 1. Odwracalność 2. Istnienie szumów pomiarowych

Sformułowanie problemu: Korzystając z posiadanej wiedzy o systemie, konkretnie z znajomości parametrów systemu lub znaleźć system liniowy, który w oparciu o znane wartości i będzie dostarczał przybliżoną (aproksymowaną) wartość , estymatę stanu System taki nazywany jest rekonstruktorem stanu lub obserwatorem

2. Stochastyczne podejście Przyjmujemy, że system podlega działaniu szumów pomiarowych oraz przypadkowych zakłóceń Rozważać będziemy jak poprzednio dwa przypadki Przypadek ciągły Przypadek dyskretny gdzie, - wektor przypadkowych zakłóceń wpływających na zmienne stanu, a - wektor przypadkowych szumów wpływających na pomiary Stan systemu i wyjście systemu stają się procesami stochastycznymi lub sekwencjami stochastycznymi wskutek występowania odpowiednio w równaniach stanu i wyjścia składników przypadkowych Notacja: duże pogrubione litery odnoszące się do sygnałów takie jaki oznaczają zmienne przypadkowe, małe pogubione litery odnoszące się do sygnałów takie jak oznaczają szczególne deterministyczne ich realizacje

Problem rekonstrukcji stanu w tym podejściu nazywany jest problemem filtracji liniowej Sformułowanie problemu: Korzystając z posiadanej wiedzy o systemie, konkretnie z znajomości parametrów systemu lub oraz danych statystycznych szumach i zakłóceniach (rozkłady prawdopodobieństwa, średnie, wariancje) i znaleźć system liniowy o wejściach i , który na wyjściu da estymatę tak bliską jak to możliwe nieznanemu stanowi System taki nazywany jest filtrem. Optymalne rozwiązanie tak sformułowanego problemu w sensie minimalnej wariancji błędu estymacji jest nazywane filtrem Kalman’a

Pełny lub n-tego rzędu obserwator (Luenberger’a) Idea pełnego obserwatora Będziemy zakładali, jak poprzednio Przypadek ciągły Podstawowa idea obserwatora Luenberger’a polega na dołączeniu do rozważanego stacjonarnego systemu liniowego, innego stacjonarnego systemu liniowego na który podawane są sygnały oraz i który musi dostarczać na swoim wyjściu przybliżoną wartość stanu Przyjmuje się następującą postać obserwatora gdzie, - macierz wzmocnień obserwatora o wymiarach

Zadaniem składnika błędu jest powodować zdążanie estymaty stanu do jej rzeczywistej wartości Nie ma powodu, aby wymagać, że w chwili stan początkowy obserwatora był równy stanowi początkowemu obserwowanego systemu, czyli Wymagać należy, aby Zdefiniujemy błąd estymacji Wielkość będzie dobrą estymatą jeżeli Dla oceny wpływu tego wymagania na wybór macierzy , o wymiarze (nxq) , obserwatora tworzymy równanie dynamiki błędu estymacji

Warunek generuje wymaganie asymptotycznej stabilności dla systemu błędu estymacji Równanie dynamiki błędu estymacji możemy zapisać gdzie, Rozwiązanie równania dynamiki błędu estymacji Jeżeli wartości własne macierzy leżą w lewej półpłaszczyźnie płaszczyzny zespolonej, to i przybliżona wartość zdąża asymptotycznie do wartości rzeczywistej Tak skonstruowany obserwator nosi nazwę obserwatora Luenberger’a (ciągłego)

Schemat blokowy systemu i jego obserwatora

Przypadek dyskretny Dla systemu Przyjmuje się następującą postać obserwatora gdzie, - macierz wzmocnień obserwatora o wymiarach Zdefiniujemy błąd estymacji oraz równanie dynamiki błędu estymacji

Równanie dynamiki błędu estymacji możemy zapisać gdzie, Rozwiązanie równani dynamiki błędu estymacji Jeżeli wartości własne macierzy leżą w okręgu jednostkowym płaszczyzny zespolonej, to i przybliżona wartość zdąża asymptotycznie do wartości rzeczywistej Tak skonstruowany obserwator nosi nazwę obserwatora Luenberger’a (dyskretnego)

Synteza pełnego obserwatora Projekt obserwatora obejmuje dwa kroki 1. Wartości własne macierzy są wybierane: a. dla przypadku ciągłego w lewej półpłaszczyźnie płaszczyzny zespolonej; ogólnie na lewo od tych jakie zostały wybrane przy projektowaniu sterowania ze sprzężeniem zwrotnym od stanu, czyli na lewo od wartości własnych , aby zapewnić szybsze zanikanie procesów przejściowych obserwatora niż systemu zamkniętego; wybrane wartości własne nie powinny jednak dawać zbyt szybkich procesów przejściowych, gdyż wówczas obserwator będzie miał tendencję wzmacniania wysokoczęstotliwościowych szumów b. dla przypadku dyskretnego w wewnątrz okręgu jednostkowego płaszczyzny zespolonej; ogólnie bliżej początku układu współrzędnych niż te jakie zostały wybrane przy projektowaniu sterowania ze sprzężeniem zwrotnym od stanu, czyli bliżej od wartości własnych , aby zapewnić szybsze zanikanie procesów przejściowych obserwatora niż systemu zamkniętego; wybrane wartości własne nie powinny jednak dawać zbyt szybkich procesów przejściowych, gdyż wówczas obserwator będzie miał tendencję wzmacniania wysokoczęstotliwościowych szumów

2. Macierz jest tak wyznaczana, aby rzeczywiście a. dla przypadku ciągłego macierz b. dla przypadku dyskretnego macierz miała wartości własne wybrane w kroku 1 Niech wielomian a. dla przypadku ciągłego: b. dla przypadku dyskretnego: będzie wielomianem charakterystycznym tej macierzy mającym takie wartości własne Dalej dla skrócenia będziemy kontynuować rozważanie tylko przypadku ciągłego

Synteza sterowania ze sprzężeniem zwrotnym od stanu Musimy zatem wyznaczyć macierz tak, aby a zatem Ponieważ dla dowolnej macierzy zachodzi możemy napisać Wyznaczanie macierzy L Podobieństwo z problemem wyznaczania macierzy wzmocnień sprzężenia zwrotnego od stanu Synteza sterowania ze sprzężeniem zwrotnym od stanu Synteza obserwatora

Korzystając z tego podobieństwa Ponieważ dla dowolnej macierzy zachodzi możemy napisać co dokładnie oznacza:

Możemy podać warunki istnienia macierzy wzmocnień obserwatora Synteza sterowania ze sprzężeniem zwrotnym od stanu Synteza obserwatora Macierz wzmocnień Macierz wzmocnień istnieje, jeżeli system istnieje, jeżeli system jest sterowalny jest obserwowalny Problem syntezy obserwatora jest problemem dualnym do problemu syntezy sterowania ze sprzężeniem zwrotnym od stanu

Projektowanie obserwatora dla systemów SISO Dla systemów SISO projektowanie obserwatora posiada jednoznaczne rozwiązanie System SISO Obserwator Macierz równania jednorodnego dynamiki błędu estymacji W oparciu o dualność problemów sterowania i obserwowania Ostatni wiersz ostatni wiersz możemy przenieść stosowanie metod projektowania sterownika na projektowanie obserwatora

a. System w postaci kanonicznej obserwowalności Jeżeli założyć, że system dany jest w postaci kanonicznej obserwowalności z wielomianem charakterystycznym i jeżeli postulować wartości własne macierzy obserwatora Luenberger’a tak, że odpowiadający im wielomian charakterystyczny jest to macierz wzmocnień obserwatora musi mieć następujące wartości

Macierze systemu w postaci kanonicznej obserwowalności zatem Obserwator też jest w tym przypadku reprezentowany w postaci kanonicznej obserwowalności

Transformacja opisu systemu do postaci kanonicznej obserwowalności Przypomnienie z MiI Sposób: zastosowanie przekształcenia podobieństwa gdzie, P – nieosobliwa macierz stałych (liczbowa) o wymiarze nxn Zbudowany model: Korzystając z przekształcenia podobieństwa tworzymy model systemu wyrażony z użyciem nowych zmiennych stanu gdzie,

Jak wyznaczyć , aby miały postać dającą model w postaci kanonicznej obserwowalności? Ograniczymy się do przypadku SISO i bez dowodu Niech wielomian charakterystyczny macierzy A Jeżeli para (A, c) jest obserwowalna, można utworzyć zbiór liniowo niezależnych wektorów n-wymiarowych

Utworzona z tych wektorów macierz P o wymiarach nxn wykorzystana jako macierz przekształcenia podobieństwa

doprowadzi do uzyskania

b. System w postaci dowolnej – wykorzystanie wzoru Ackermann’a Ponownie skorzystamy z dualności problemów sterowania i obserwowania Możemy napisać Stąd dostajemy po transformacji twierdzenie dualne do twierdzenia Ackermann’a

Twierdzenie dualne Ackermann’a Jeżeli system jest obserwowalny i jeżeli wymaga się, aby obserwator n – tego rzędu (Luenbergr’a) posiadał wielomian charakterystyczny to należy wybrać macierz wzmocnień obserwatora o wartościach gdzie jest ostatnią kolumną odwrotnej macierzy obserwowalności i jest określona lub

Przykład 1: System jednowymiarowy Zaprojektować pełny obserwator stanu dla systemu, mający podwójna wartość własną w Opis w przestrzeni stanu

Wykorzystamy wzór Ackermann’a

Zatem Równanie obserwatora lub

Przykład 2: Zaprojektować obserwator dla systemu trzeciego rzędu System w postaci kanonicznej sterowalności Wielomian charakterystyczny systemu Wartości własne

Postulowane wartości własne obserwatora Wielomian charakterystyczny obserwatora Sprawdzenie obserwowalności systemu Do obliczenia macierzy wzmocnień obserwatora zastosujemy wzór Ackermann’a

Wielomian charakterystyczny macierzy stanu

Zatem

Wyniki symulacji Warunki początkowe

Wyniki symulacji – c.d. System Obserwator

Przykład 3. (przykład rozważany na poprzednich wykładach dla ilustracji działania całkującego) Dany jest system opisany macierzami Opis – postać kanoniczna sterowalności Wielomian charakterystyczny systemu otwartego Wartości własne wielomianu charakterystycznego systemu otwartego Stabilny asymptotyczne, słabo tłumiony system rzędu trzeciego

Dla zaprojektowania sterowania ze sprzężeniem od stanu, położenie wartości własnych zostało wybrane:  Dominujące wartości własne (człon drugiego rzędu oscylacyjny) - Przeregulowanie procentowe: 6% - Czas ustalania się 2%: 3 [s] Postulowane wartości własne odpowiadające tym parametrom  Trzecia wartość własna (człon pierwszego rzędu) - ujemna, dziesięć razy większa od części rzeczywistej dominujących wartości własnych Wielomian charakterystyczny systemu zamkniętego

Dla zaprojektowania obserwatora przeskalujmy podane wartości własne Wielomian charakterystyczny dla dynamiki błędu obserwatora Porównanie

Sprawdzenie obserwowalności System jest obserwowalny

Macierz A postaci kanonicznej obserwowalności Zatem macierz wzmocnień obserwatora „Szybkie” wartości własne obserwatora prowadzą do dużych wzmocnień obserwatora – należy znaleźć kompromis pomiędzy szybką zbieżnością obserwatora i możliwymi wzmocnieniami obserwatora

Dziękuję za uczestnictwo w wykładzie i uwagę