Fale elektromagnetyczne Opracowanie: A.Węgrzyniak M. Kundzierwicz

Slides:



Advertisements
Podobne prezentacje
Fale elektromagnetyczne Opracowanie: A.Węgrzyniak M. Kundzierwicz
Advertisements

Fale Elektromagnetyczne
Technika bezprzewodowa
Fale elektroma-gnetyczne
FALE RADIOWE I MIKROFALE
© IEn Gdańsk 2011 Wpływ dużej generacji wiatrowej w Niemczech na pracę PSE Zachód Robert Jankowski Andrzej Kąkol Bogdan Sobczak Instytut Energetyki Oddział.
Przekształcanie jednostek miary
Blok I: PODSTAWY TECHNIKI Lekcja 7: Charakterystyka pojęć: energia, praca, moc, sprawność, wydajność maszyn (1 godz.) 1. Energia mechaniczna 2. Praca 3.
Równowaga chemiczna - odwracalność reakcji chemicznych
EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY I WEWNĘTRZNY KRZYSZTOF DŁUGOSZ KRAKÓW,
Pole magnetyczne i elektryczne Ziemi
TECHNOLOGIE MIKROELEKTRONICZNE Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, Gliwice (
Paulina Ziębiec ZiIP WGIG Fizyka współczesna Kraków,
Nature Tan Здоровый загар NatureTan NATURALNA OPALENIZNA NATURALNA OPALENIZNA.
Edukacja dla Bezpieczeństwa Aleksandra Czakon. Zanieczyszczenie środowiska przyrodniczego (gleby, wody, powietrza) albo organizmu ludzkiego czy zwierzęcego.
Spektroskopia Ramana dr Monika Kalinowska. Sir Chandrasekhara Venkata Raman ( ), profesor Uniwersytetu w Kalkucie, uzyskał nagrodę Nobla w 1930.
Według Europejskiego Technicznego Biura Związków Zawodowych ds. ochrony zdrowia i bezpiecznej pracy.
Przemiany energii w ruchu harmonicznym. Rezonans mechaniczny Wyk. Agata Niezgoda Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
WIDMO FAL ELEKTROMAGNETYCZNYCH
Dlaczego boimy się promieniotwórczości?
Dyfrakcja elektronów Agnieszka Wcisło Gr. III Kierunek Zarządzanie i Inżynieria Produkcji Wydział Górnictwa i Geoinżynierii Katedra Ekonomiki i Zarządzania.
Woda to jeden z najważniejszych składników pokarmowych potrzebnych do życia. Woda w organizmach roślinnych i zwierzęcych stanowi średnio 80% ciężaru.
ENERGIA to podstawowa wielkość fizyczna, opisująca zdolność danego ciała do wykonania jakiejś pracy, ruchu.fizyczna Energię w równaniach fizycznych zapisuje.
Przygotowały: Laura Andrzejczak oraz Marta Petelenz- Łukasiewicz z klasy 2”D”
Laboratorium Elastooptyka.
Radosław Stefańczyk 3 FA. Fotony mogą oddziaływać z atomami na drodze czterech różnych procesów. Są to: zjawisko fotoelektryczne, efekt tworzenie par,
Promieniowanie rentgenowskie Fizyka współczesna Dawid Sekta WGiG IV gr. 4 Kraków,
DYFRAKCJA, INTERFERENCJA I POLARYZACJA ŚWIATŁA
Zjawisko fotoelektryczne zewnętrzne i wewnętrzne
Półprzewodniki i urządzenia półprzewodnikowe Elżbieta Podgórska Zarządzanie i Inżynieria Produkcji Wydział Górnictwa i Geoinżynierii Gr 3, rok 4
Półprzewodniki i urządzenia półprzewodnikowe
Analiza spektralna. Laser i jego zastosowanie.
Konrad Benedyk Zarządzanie i Inżynieria Produkcji 1 rok, II stopień
Pole magnetyczne Magnes trwały – ma dwa bieguny - biegun północny N i biegun południowy S.                                                                                                                                                                     
Własności elektryczne materii
Prądnica Co to takiego?.
Masery i lasery. Zasada działania i zastosowania.
M ETODY POMIARU TEMPERATURY Karolina Ragaman grupa 2 Zarządzanie i Inżynieria Produkcji.
Msery i lasery Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and Technology Wykonał: Piotr Ćwiek.
Nadprzewodnictwo Gwiazdoń Dagmara WGIG, ZiIP, grupa 2.
FALE ELEKTROMAGNETYCZNE
Promieniowanie jądrowe Faustyna Hołda Fizyka współczesna ZiIP, GiG.
Promieniowanie jonizujące. Co to jest promieniotwórczość?
Jak to jest, ze będąc w dwóch różnych częściach świata możemy rozmawiać ze sobą przez telefon? Prezentację wykonały: Sandra i Dominika.
Zmysły.
Fale Elektromagnetyczne.
Temat: Właściwości magnetyczne substancji.
Fale Elektromagnetyczne
Wykonał: Kamil Olczak VID
Wykład IV Zakłócenia i szumy.
Fizyczne Podstawy Teledetekcji Wykład 3
W kręgu matematycznych pojęć
Optyka geometryczna.
Matematyka w Muzyce.
Największe i najmniejsze (cz. I)
Metody teledetekcyjne w badaniach atmosfery
Optyka W.Ogłoza.
PRZYKŁADY Metody obrazowania obiektów
Widmo fal elektromagnetycznych
Podsumowanie W3  E x (gdy  > 0, lub n+i, gdy  <0 )
CZYNNIK LUDZKI JAKO POTENCJALNE ŹRÓDŁO ZAGROŻEŃ W SYSTEMIE OCHRONY INFORMACJI NIEJAWNYCH OPRACOWAŁ: ppłk mgr inż. Janusz PARCZEWSKI, tel
Fizyka współczesna Tomasz Czyszanowski
Optyka Nauka o świetle.
Prawa ruchu ośrodków ciągłych c. d.
Instytut Tele- i Radiotechniczny Instytut Elektrotechniki
Naturalne źródła węglowodorów
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Zapis prezentacji:

Fale elektromagnetyczne Opracowanie: A.Węgrzyniak M. Kundzierwicz

Fale elektromagnetyczne 1. Co to jest? 2. Zjawiska fal elektromagnetycznych 3. Pasma fal elektromagnetycznych 4. Fale radiowe 5. Mikrofale 6. Podczerwień 7. Ultrafiolet 8. Promieniowanie rentgenowskie 9. Promieniowanie gamma 10. Literatura

Co to jest? Rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Fale elektromagnetyczne są falami poprzecznymi tzn. w każdym punkcie pola wektor natężenia pola elektrycznego i wektor indukcji magnetycznej są prostopadłe do kierunku rozchodzenia się fal elektromagnetycznych.

Istotny wpływ na takie własności fal elektromagnetycznych, jak prędkość rozchodzenia się, polaryzacja, natężenie, ma ośrodek, w którym się fale elektromagnetyczne rozchodzą. Charakterystyczne dla fal elektromagnetycznych są zjawiska interferencji, dyfrakcji, załamania, oraz całkowitego wewnętrznego odbicia.

Dyfrakcja - zjawisko wygięcia fali na przeszkodzie Interferencja - nakładanie się fal Jeżeli fala elektromagnetyczna pada na granicę dwóch ośrodków materialnych to może nastąpić zarówno jej załamanie jak i odbicie Całkowite wewnętrzne odbicie - zjawisko fizyczne zachodzące dla fal (najbardziej znane dla światła) i występujące na granicy ośrodków o różnych współczynnikach załamania.

Pasma fal elektromagnetycznych Pasmo Częstotliwość fali Długość fali Energia pojedynczego kwantu promieniowania (fotonu) Fale radiowe do 300 MHz powyżej 1 m poniżej 1.24 μeV Mikrofale od 300 MHz do 300 GHz od 1 m do 1 mm od 1.24 μeV do 1.24 meV Podczerwień od 300 GHz do 400 THz od 1mm do 780 nm od 1.24 meV do 1.6 eV Światło widzialne od 400 THz do 789 THz od 780 nm do 380 nm od 1.6 eV do 3.4 eV Ultrafiolet od 789 THz do 30 PHz 380 nm do 10 nm od 3.4 eV do 124 eV Promieniowanie rentgenowskie od 30 PHz do 60 EHz 10 nm do 5 pm od 124 eV do 250 keV Promieniowanie gamma powyżej 60 EHz poniżej 5 pm powyżej 250 keV Elektronowolt (eV) – jednostka energii stosowana w fizyce . Jeden elektronowolt jest to energia, jaką uzyskuje elektron, który jest przyspieszany napięciem równym 1 woltowi μ- predrostek oznaczający mikro

Fale radiowe Fale radiowe znajdują bardzo szerokie zastosowanie w telekomunikacji, radiofonii, telewizji, radioastronomii i wielu innych dziedzinach nauki i techniki. W technice podstawowym źródłem fal radiowych są anteny zasilane prądem przemiennym odpowiedniej częstotliwości. Wiele urządzeń generuje też zakłócenia będące falami radiowymi, wymienić tu można na przykład: zasilacze impulsowe, piece indukcyjne, spawarki, zapłon iskrowy silników samochodowych. Naturalne źródła fal radiowych to między innymi wyładowania atmosferyczne, zorze polarne, radiogalaktyki. W atmosferze propagacja fal radiowych jest dosyć skomplikowana, zachodzą różnorodne odbicia i ugięcia fali

Mikrofale Podstawowe zastosowania mikrofal to łączność (na przykład telefonia komórkowa, radiolinie, bezprzewodowe sieci komputerowe) oraz technika radarowa. Wiele dielektryków mocno absorbuje mikrofale, co powoduje ich rozgrzewanie i jest wykorzystywane w kuchenkach mikrofalowych, przemysłowych urządzeniach grzejnych i w medycynie. W elektronice mikrofalowej rozmiary elementów i urządzeń są porównywalne z długością fali przenoszonego sygnału

Podczerwień Promieniowanie podczerwone jest nazywane również cieplnym, szczególnie gdy jego źródłem są nagrzane ciała. Każde ciało o temperaturze większej od zera bezwzględnego emituje takie promieniowanie. W paśmie promieniowania podczerwonego są prowadzone obserwacje astronomiczne i meteorologiczne. Jest ono używane w technice grzewczej. Promieniowanie podczerwone również jest stosowane do przekazu informacji - do transmisji. Spektroskopia w podczerwieni umożliwia identyfikację organicznych związków chemicznych i badanie ich struktury.

Ultrafiolet Promieniowanie ultrafioletowe jest zaliczane do promieniowania jonizującego, czyli ma zdolność odrywania elektronów od atomów i cząsteczek. Obserwacje astronomiczne w ultrafiolecie rozwinęły się dopiero po wyniesieniu ponad atmosferę przyrządów astronomicznych. W technice ultrafiolet stosowany jest powszechnie. Powoduje świecenie (fluorescencję) wielu substancji chemicznych. Niektóre owady, na przykład pszczoły, widzą w bliskiej światłu widzialnemu części widma promieniowania ultrafioletowego, również rośliny posiadają receptory ultrafioletu

Promieniowanie rentgenowskie Technicznie promieniowanie rentgenowskie uzyskuje się przeważnie poprzez wyhamowywanie rozpędzonych cząstek naładowanych. Źródłem wysokoenergetycznego promieniowania rentgenowskiego są również przyspieszane w akceleratorach cząstki naładowane. Promieniowanie rentgenowskie jest wykorzystywane do wykonywania zdjęć rentgenowskich do celów defektoskopii i diagnostyki medycznej. W zakresie promieniowania rentgenowskiego są również prowadzone obserwacje astronomiczne.

Promieniowanie gamma Promieniowania gamma jest promieniowaniem jonizującym. Promieniowanie gamma towarzyszy reakcjom jądrowym powstaje w wyniku anihilacji czyli zderzenie cząstek, oraz rozpad cząstek elementarnych Niekiedy bywa nazywane wysokoenergetycznym promieniowaniem rentgenowskim. Promienie gamma mogą służyć do sterylizacji żywności i sprzętu medycznego. W medycynie używa się ich w radioterapii oraz w diagnostyce. Zastosowanie w przemyśle obejmują badania defektoskopowe.

Literatura http://www.google.pl/imghp?hl=pl&tab=ii http://pl.wikipedia.org/wiki/Promieniowanie_elektromagnetyczne http://pl.wikipedia.org/w/index.php?title=Plik:EM_Spectrum_Properties_pl.svg&filetimestamp=20080419202558 http://www.sciaga.pl/tekst/3439-4-fale_elektromagnetyczne