Sterowanie – metody alokacji biegunów II

Slides:



Advertisements
Podobne prezentacje
Sterowanie – metody alokacji biegunów II
Advertisements

Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Systemy stacjonarne i niestacjonarne (Time-invariant and Time-varing systems) Mówimy, że system jest stacjonarny, jeżeli dowolne przesunięcie czasu  dla.
Równanie różniczkowe zupełne i równania do niego sprowadzalne
ATOM WODORU, JONY WODOROPODOBNE; PEŁNY OPIS
Badania operacyjne. Wykład 2
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Sterowalność i obserwowalność
Kryterium Nyquista Cecha charakterystyczna kryterium Nyquist’a
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
UKŁADY SZEREGOWO-RÓWNOLEGŁE
Matematyka.
Stabilność Stabilność to jedna z najważniejszych właściwości systemów dynamicznych W większości przypadków, stabilność jest warunkiem koniecznym praktycznego.
Układy równań 23x - 31 y = 1 x – y = - 8 x = -1 y - x = 1 x + y = 11
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów, elementów i układów.
Sterowalność i obserwowalność
Teoria sterowania 2012/2013Sterowanie – użycie obserwatorów pełnych II Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Sterowanie.
Metody Lapunowa badania stabilności
Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność
AUTOMATYKA i ROBOTYKA (wykład 6)
Obserwatory zredukowane
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Sterowanie – użycie obserwatorów pełnych
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Wykład 22 Modele dyskretne obiektów.
II. Matematyczne podstawy MK
Sterowanie – działanie całkujące
Obserwowalność i odtwarzalność
Sterowalność - osiągalność
Modelowanie – Analiza – Synteza
ISS – Synteza regulatora cyfrowego (minimalnoczasowego)
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
Przekształcenia liniowe
Sterowanie – użycie obserwatorów pełnych
Sterowanie – metody alokacji biegunów
Sterowanie – metody alokacji biegunów III
Elementy geometrii analitycznej w przestrzeni R3
Modelowanie i identyfikacja 2013/2014 Identyfikacja rekursywna i nieliniowa I 1 Katedra Inżynierii Systemów Sterowania  Kazimierz Duzinkiewicz, dr hab.
Teoria sterowania 2013/2014Sterowanie – obserwatory zredukowane II  Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Obserwatory.
II Zadanie programowania liniowego PL
Modele dyskretne – dyskretna aproksymacja modeli ciągłych lub
Teoria sterowania SN 2014/2015Sterowalność, obserwowalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność -
Sterowanie ze sprzężeniem od stanu – metoda alokacji biegunów
Systemy dynamiczne 2014/2015Sterowalność - osiągalność  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność i obserwowalność.
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Systemy liniowe stacjonarne – modele różniczkowe i różnicowe
Matematyka Ekonomia, sem I i II.
Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe
© Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH Temat – 5 Modelowanie różniczkowe.
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Podstawy teorii spinu ½
Zapis prezentacji:

Sterowanie – metody alokacji biegunów II Metody projektowania macierzy sterowania (sprzężenia zwrotnego) L Dwie grupy metod:  Metody alokowania biegunów (metody rozmieszczania biegunów) Dane jest a priori rozmieszczenie biegunów systemu zamkniętego (na płaszczyźnie s lub z) i macierz L jest wyznaczana tak, aby system zamknięty posiadał rzeczywiście takie bieguny  Metody specyficzne dla systemów MIMO

Schemat sterowania systemu ze sterowaniem od stanu Metoda alokacji biegunów Podstawy metody Metoda związana z działaniem regulacyjnym (związane z warunkiem początkowym , przy przyjęciu Nie bierze się pod uwagę równania wyjścia , gdyż brane jest ono pod uwagę przy projektowaniu macierz kompensacji wzmocnień lub Schemat sterowania systemu ze sterowaniem od stanu

Projektowanie metodą alokacji biegunów polega znalezieniu stałej macierzy sprzężenia zwrotnego (od stanu) takiej, że wartości własne systemu zamkniętego zarówno systemu ciągłego jak i dyskretnego, znajdują się w danych położeniach na płaszczyźnie s lub z Warunki istnienia macierzy Wszystkie wartości własne systemu mogą być przemieszczone do nowych dowolnych położeń wtedy i tylko wtedy, gdy system jest całkowicie sterowalny Sterowalność, warunki sterowalności, dekompozycja kanoniczna sterowalności - poprzednie wykłady System niesterowalny (niecałkowicie sterowalny) Przez przekształcenie podobieństwa znajdujemy postać dekompozycyjną kanoniczną sterowalności systemu

Dekompozycyjna postać kanoniczna sterowalności System ciągły System dyskretny gdzie - sterowalne zmienne stanu nowego wektora stanu - niesterowalne zmienne stanu nowego wektora stanu Sterowanie ze sprzężeniem od stanu System ciągły System dyskretny

daje system zamknięty o równaniu stanu System ciągły System dyskretny Blokowo – diagonalna macierz systemu zamkniętego ma wartości będące połączeniem wartości własnych macierzy System ciągły System dyskretny Wybór wartości własnych systemu zamkniętego nie jest w tym przypadku arbitralny, ponieważ musi on zawierać wartości własne (system ciągły) lub (system dyskretny)

Ogólna procedura wyznaczania macierzy L Przy warunku równanie stanu systemu zamkniętego Wartości własne macierzy systemu zamkniętego , które zostały wybrane, są zerami wielomianu charakterystycznego systemu zamkniętego gdzie, oznacza, że współczynnik wielomianu zależy od elementów nieznanej macierzy Z drugiej strony, arbitralny wybór wartości własnych jest równoważny arbitralnemu wyborowi współczynników wielomianu, ponieważ

Przyrównując do siebie współczynniki powyższych wielomianów, otrzymujemy układ równań () t.j. układ n równań (określone ) o p x n niewiadomych (wymiar macierzy L) Konsekwencje:  p = 1, system jednowymiarowy, układ określony, istnieje jednoznaczne rozwiązanie  p > 1, system wielowymiarowy, układ niedookreślony, nie istnieje jednoznaczne rozwiązanie

Systemy jednowymiarowe Dla p = 1 macierz redukuje się do wiersza Prawo sterowania, staje się skalarem Dla systemów niskiego rzędu (do 4 – tego) lub gdy macierz systemu zamkniętego jest rzadka (mało elementów niezerowych) układ równań () można rozwiązywać bezpośrednio dla otrzymania System dany w postaci kanonicznej sterowalności Jeżeli system dany w postaci kanonicznej sterowalności (patrz wykłady MiI) – macierz systemu zamkniętego CCF – Controllability Canonical Form

Przypomnienie: macierz oraz wektor Stąd

Macierz ma nadal strukturę kanoniczną sterowalności – współczynniki wielomianu charakterystycznego otrzymujemy bez obliczeń Współczynniki wielomianu charakterystycznego = elementy ostatniego wiersza macierzy systemu zamkniętego w postaci kanonicznej sterowalności ze znakiem przeciwnym Twierdzenie 1: Załóżmy, że system sterowania ciągłego, jednowymiarowego jest dany w postaci kanonicznej sterowalności z wielomianem charakterystycznym i że dla systemu zamkniętego wielomian charakterystyczny jest postulowany. Wówczas macierz dająca taki wielomian dana jest

System dany w dowolnej postaci – wzór Ackermann’a Jeżeli system jest sterowalny, to zawsze można go przekształcić do postaci kanonicznej sterowalności stosując przekształcenie podobieństwa gdzie jest wektorem stanu odpowiadającym postaci kanonicznej oraz macierz odwrotna przekształcenia jest dana wzorem gdzie wiersz jest ostatnim wierszem odwrotnej macierzy sterowalności Dla postaci kanonicznej sterowalności prawo sterowania ma postać co daje

Macierz dająca postulowany wielomian charakterystyczny Dalej wykorzystywane jest twierdzenie Cayley’a-Hamiltona Twierdzenie Cayley’a-Hamiltona: Każda macierz kwadratowa wymiaru spełnia swoje równanie charakterystyczne. Innymi słowy, jeżeli równanie charakterystyczne macierzy jest wówczas zachodzi też

Macierze podobne mają takie same wartości własne, w przypadku rozważanym są to macierze oraz Macierz te mają zatem też jednakowe wielomiany charakterystyczne Zgodnie z twierdzeniem Cayley’a-Hamiltona macierz musi zatem spełniać równanie macierzy Równanie charakterystyczne macierzy daje mnożąc lewostronnie przez Podstawiając ten wynik do dostajemy twierdzenie Ackermann’a

Twierdzenie 2: Jeżeli system jest sterowalny i postulowany jest wielomian charakterystyczny systemu zamkniętego postaci to macierz sterowania należy wybrać jako gdzie jest ostatnim wierszem odwrotnej macierzy sterowalności a zatem jest określony

Przykład 1: System jednowymiarowy Zaprojektować sterowanie ze sprzężeniem zwrotnym od stanu, tzn. wyznaczyć , które są elementami macierzy sterowań Bieguny (wartości własne) systemu zamkniętego powinny być ulokowane w punktach

Opis w przestrzeni stanu Wielomian charakterystyczny systemu zamkniętego Najpierw Macierz systemu zamkniętego

Stąd wielomian charakterystyczny systemu zamkniętego Pożądany wielomian charakterystyczny systemu zamkniętego Stąd układ równań Rozwiązanie

Prawo sterowania

Zastosowanie wzoru Ackermann’a Macierz sterowalności W przykładzie – system jednowymiarowy

Pożądany wielomian charakterystyczny systemu zamkniętego Prawo sterowania

Dziękuję za uczestnictwo w wykładzie i uwagę

Dodatek 1 System jednowymiarowy ciągły Postać kanoniczna sterowalności Macierz sterowalności (dla dowolnej postaci)

Przekształcenia podobieństwa

Przekształcenie do postaci kanonicznej sterowalności Twierdzenie D1: Jeżeli system jest sterowalny, wówczas jest możliwe za pomocą przekształcenia przedstawić go w postaci kanonicznej sterowalności gdzie, i gdzie macierz odwrotna przekształcenia,

Przy czym wiersz jest ostatnim wierszem odwrotnej macierzy sterowalności i może zatem być obliczony z następującego układu równań to znaczy, że zachodzi również