Obserwowalność i odtwarzalność System ciągły System dyskretny Obserwowalność/odtwarzalność określa możliwość jednoznacznego określenia stanu systemu w oparciu pomiary przez skończony przedział czasu sygnałów wejścia i wyjścia Znaczenie: znajomość stanu początkowego i wejścia systemu pozwala zrekonstruować całą trajektorię stanu w oparciu o równania stanu
Systemy ciągłe Obserwowalność stanu Stan obserwowalny Stan systemu liniowego jest obserwowalny jeżeli można go określić znając wyjście dla chwil ze skończonego przedziału, Jeżeli każdy stan jest obserwowalny, mówimy, że system jest całkowicie obserwowalny lub krócej obserwowalny
Obserwowalność systemu ciągłego liniowego stacjonarnego Twierdzenie OSC LS1 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz obserwowalności, nazywana macierzą obserwowalności Kalmana ma rząd n, tzn. rząd systemu
Wymiar macierzy obserwowalnośći: nqxn; n – wymiar stanu, q – wymiar wyjścia Dla q=1 macierz obserwowalności jest macierzą kwadratową i dla sprawdzenia obserwowalności wystarczy sprawdzić nieosobliwość macierzy obserwowalności
Inne testy obserwowalności systemów ciągłych Dodatek A
Obserwowalność a przekształcenia podobieństwa Obserwowalność zostaje zachowana podczas transformacji podobieństwa
Odtwarzalność stanu Stan odtwarzalny Stan systemu liniowego jest odtwarzalny jeżeli można go określić znając wyjście dla chwil ze skończonego przedziału, Jeżeli każdy stan jest odtwarzalny, mówimy, że system jest całkowicie odtwarzalny lub krócej odtwarzalny
Dla systemów ciągłych obserwowalność i odtwarzalność są równoważne Odtwarzalność systemu ciągłego liniowego stacjonarnego Twierdzenie OtSC LS1 System liniowy stacjonarny jest odtwarzalny wtedy i tylko wtedy, gdy macierz odtwarzalnośći, nazywana macierzą odtwarzalności Kalmana ma rząd n, tzn. rząd systemu
Systemy dyskretne Obserwowalność stanu Stan obserwowalny Stan systemu liniowego jest obserwowalny jeżeli można go określić znając wyjście dla chwil ze skończonego przedziału, Jeżeli każdy stan jest obserwowalny, mówimy, że system jest całkowicie obserwowalny lub krócej obserwowalny
Obserwowalność systemu dyskretnego liniowego stacjonarnego Twierdzenie OSD LS1 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz obserwowalności, nazywana macierzą obserwowalności Kalmana ma rząd n, tzn. rząd systemu
Inne testy obserwowalności systemów dyskretnych Dodatek B
Dla systemów dyskretnych obserwowalność i odtwarzalność nie są równoważne Odtwarzalność systemu dyskretnego liniowego stacjonarnego Twierdzenie OtSD LS1 System liniowy stacjonarny jest odtwarzalny wtedy, gdy macierz odtwarzalności, nazywana macierzą odtwarzalności Kalmana ma rząd n, tzn. rząd systemu
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych Przykład 1 Mamy system Liniowy, stacjonarny, 1 – wejście, 1 - wyjście
Transmitancja Zera i bieguny transmitancji Transmitancja po redukcji
Schemat blokowy modelu przestrzeni stanu
Schemat blokowy modelu w nowej przestrzeni stanu Transformacja do postaci diagonalnej Schemat blokowy modelu w nowej przestrzeni stanu
Cztery różne statusy zmiennych stanu: - v1 można na niego wpływać sterowaniem u i można go obserwować z wyjścia y - v2 nie można na niego wpływać sterowaniem u, ale można go obserwować z wyjścia y - v3 można na niego wpływać sterowaniem u, ale nie można go obserwować z wyjścia y - v4 nie można na niego wpływać sterowaniem u, ani nie można go obserwować z wyjścia y
Można wyróżnić cztery podsystemy: - związany ze zmienną stanu v1 sterowalny i obserwowalny - związany ze zmienną stanu v2 niesterowalny, ale obserwowalny - związany ze zmienną stanu v3 sterowalny, ale nieobserwowalny - związany ze zmienną stanu v4 niesterowalny i nieobserwowalny Stany niesterowalne i nieobserwowalne mogą być alb stabilne, albo niestabilne System, którego wszystkie stany niesterowalne są stabilne jest nazywany stabilizowalnym System, którego wszystkie stany nieobserwowalne są stabilne jest nazywany wykrywalnym
Dekompozycja na podprzestrzenie sterowalne/osiągalne Jeżeli system jest niesterowalny/nieosiągalny można go zdekomponować na część sterowalną i niesterowalną Twierdzenie o dekompozycji na podprzestrzenie sterowalne Jeżeli system liniowy stacjonarny o macierzach A, B i C nie jest sterowalny (tzn. A jest wymiaru nxn i rank(Mc = p < n) wówczas może być znalezione przekształcenie podobieństwa takie, że macierze systemu po transformacji mają postać gdzie, , a para macierzy {AC, BC} jest sterowalna, oraz
Dodatek C – Sposób znajdowania macierzy przekształcenia podobieństwa i przykład
Dekompozycja na podprzestrzenie obserwowalne/odtwarzalne Jeżeli system jest nieobserwowalny można go zdekomponować na część obserwowalną i nieobserwowalną Twierdzenie o dekompozycji na podprzestrzenie obserwowalna Jeżeli system liniowy stacjonarny o macierzach A, B i C nie jest obserwowalny (tzn. A jest wymiaru nxn i rank(Mo = p < n) wówczas może być znalezione przekształcenie podobieństwa takie, że macierze systemu po transformacji mają postać gdzie, , , a para macierzy {Ao, Bo} jest obserwowalna, oraz
Dodatek D – Sposób znajdowania macierzy przekształcenia podobieństwa i przykład
Dziękuję za uczestnictwo w wykładzie i uwagę
Inne testy sterowalności systemów ciągłych Dodatek A Inne testy sterowalności systemów ciągłych
Twierdzenie OSC LS2 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy nie istnieje żadem prawostronny wektor własny macierz A, taki że co oznacza, że żaden wektor własny macierz A nie jest ortogonalny do wszystkich kolumn macierz C
Twierdzenie OSC LS3 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz o wymiarze (r+n)xn ma rząd n dla dowolnego zespolonego skalara s Test obserwowalności w oparciu o twierdzenia 2 i 3 nosi nazwę testu Popov’a – Belevitch’a-Hautus’a
Twierdzenie OSC LS4 Diagonalny system liniowy stacjonarny z jednokrotnymi wartościami własnymi jest obserwowalny wtedy i tylko wtedy, gdy macierz C nie ma kolumn zerowych
Inne testy obserwowalności systemów dyskretnych Dodatek B Inne testy obserwowalności systemów dyskretnych
Twierdzenie OSD LS2 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy nie istnieje żadem prawostronny wektor własny macierz AD , taki że co oznacza, że żaden wektor własny macierz AD nie jest ortogonalny do wszystkich kolumn macierz CD
Twierdzenie OSD LS3 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz o wymiarze (r+n)xn ma rząd n dla dowolnego zespolonego skalara z Test sterowalności w oparciu o twierdzenia 2 i 3 nosi nazwę testu Popov’a – Belevitch’a-Hautus’a
Twierdzenie OSD LS4 Diagonalny system liniowy stacjonarny z jednokrotnymi wartościami własnymi jest obserwowalny wtedy i tylko wtedy, gdy macierz CD nie ma kolumn zerowych
Sposób znajdowania macierzy przekształcenia podobieństwa i przykład Dodatek C
Macierz transformacji Q może być utworzona w następujący sposób: Macierz MC ma wymiar n x nm, a ponieważ jest rządu p, można spośród jej kolumn wybrać p kolumn liniowo niezależnych Załóżmy, że będą to kolumny Następnie wybieramy n – p wektorów tak, aby macierz była nieosobliwa
Przykład 1. Rozważamy system dwuwymiarowy ( dwa wejścia, dwa wyjścia) Macierz sterowalności Kalmana Rząd macierzy Kalmana System jest niesterowalny
Dwie pierwsze kolumny macierzy sterowalności są liniowo niezależne, dobierzemy wektor Wówczas oraz Macierze systemu po transformacji podobieństwa
Macierze podsystemu sterowalnego Niesterowalna część systemu opisana równaniem stanu Macierz transmitancji systemu przed i po transformacji
Związki pomiędzy zmiennymi stanu Wartość własna części niesterowalne wynosi System jest stabilizowalny
Sposób znajdowania macierzy przekształcenia podobieństwa i przykład Dodatek D
Macierz transformacji P może być utworzona w następujący sposób: Macierz Mo ma wymiar nr x n, a ponieważ jest rządu p, można spośród jej wierszy wybrać p wierszy liniowo niezależnych Załóżmy, że będą to kolumny Następnie wybieramy n – p wektorów tak, aby macierz n x n była nieosobliwa
Przykład 2. Rozważamy system dwuwymiarowy ( 2 wejścia, dwa wyjścia) System jest sterowalny lecz nieobserwowalny – macierz obserwowalności Kalmana Rząd macierzy Kalmana System jest nieobserwowalny
Dwa pierwsze wiersze macierzy obserwowalności są liniowo niezależne, dobierzemy wektor Wówczas oraz Macierze systemu po transformacji podobieństwa
Macierze podsystemu obserwowalnego Macierz transmitancji systemu przed i po transformacji
Wartości własne systemu oryginalnego Podsystemu obserwowalnego Wartość własna części nieobserwowalnej wynosi System jest niewykrywalny