Obserwowalność i odtwarzalność

Slides:



Advertisements
Podobne prezentacje
Sterowanie – metody alokacji biegunów II
Advertisements

Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Systemy stacjonarne i niestacjonarne (Time-invariant and Time-varing systems) Mówimy, że system jest stacjonarny, jeżeli dowolne przesunięcie czasu  dla.
Systemy liniowe stacjonarne – modele wejście – wyjście (splotowe)
Metody Sztucznej Inteligencji 2012/2013Zastosowania systemów rozmytych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Zastosowania.
Przetwarzanie i rozpoznawanie obrazów
WYKŁAD 6 ATOM WODORU W MECHANICE KWANTOWEJ (równanie Schrődingera dla atomu wodoru, separacja zmiennych, stan podstawowy 1s, stany wzbudzone 2s i 2p,
Badania operacyjne. Wykład 2
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Sterowalność i obserwowalność
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
UKŁADY SZEREGOWO-RÓWNOLEGŁE
Klasyfikacja systemów
Dyskretny szereg Fouriera
Transformacja Z (13.6).
Stabilność Stabilność to jedna z najważniejszych właściwości systemów dynamicznych W większości przypadków, stabilność jest warunkiem koniecznym praktycznego.
Opis matematyczny elementów i układów liniowych
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów, elementów i układów.
Sterowalność i obserwowalność
Teoria sterowania 2012/2013Sterowanie – użycie obserwatorów pełnych II Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Sterowanie.
Metody Lapunowa badania stabilności
Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność
AUTOMATYKA i ROBOTYKA (wykład 6)
Obserwatory zredukowane
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
AUTOMATYKA i ROBOTYKA (wykład 5)
Sterowanie – użycie obserwatorów pełnych
Analiza wpływu regulatora na jakość regulacji (1)
Analiza wpływu regulatora na jakość regulacji
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Miary efektywności/miary dobroci/kryteria jakości działania SSN
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Wykład 22 Modele dyskretne obiektów.
Modele dyskretne obiektów liniowych
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
-17 Oczekiwania gospodarcze – Europa Wrzesień 2013 Wskaźnik > +20 Wskaźnik 0 a +20 Wskaźnik 0 a -20 Wskaźnik < -20 Unia Europejska ogółem: +6 Wskaźnik.
Sterowanie – użycie obserwatorów pełnych
Sterowanie – metody alokacji biegunów
Sterowanie – metody alokacji biegunów III
Modelowanie i identyfikacja 2013/2014 Identyfikacja rekursywna i nieliniowa I 1 Katedra Inżynierii Systemów Sterowania  Kazimierz Duzinkiewicz, dr hab.
Teoria sterowania 2013/2014Sterowanie – obserwatory zredukowane II  Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Obserwatory.
Modele dyskretne – dyskretna aproksymacja modeli ciągłych lub
Teoria sterowania SN 2014/2015Sterowalność, obserwowalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność -
Sterowanie ze sprzężeniem od stanu – metoda alokacji biegunów
Systemy dynamiczne 2014/2015Sterowalność - osiągalność  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność i obserwowalność.
Przykład 5: obiekt – silnik obcowzbudny prądu stałego
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Systemy liniowe stacjonarne – modele różniczkowe i różnicowe
Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe
Teoria sterowania Wykład /2016
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Zapis prezentacji:

Obserwowalność i odtwarzalność System ciągły System dyskretny Obserwowalność/odtwarzalność określa możliwość jednoznacznego określenia stanu systemu w oparciu pomiary przez skończony przedział czasu sygnałów wejścia i wyjścia Znaczenie: znajomość stanu początkowego i wejścia systemu pozwala zrekonstruować całą trajektorię stanu w oparciu o równania stanu

Systemy ciągłe Obserwowalność stanu Stan obserwowalny Stan systemu liniowego jest obserwowalny jeżeli można go określić znając wyjście dla chwil ze skończonego przedziału, Jeżeli każdy stan jest obserwowalny, mówimy, że system jest całkowicie obserwowalny lub krócej obserwowalny

Obserwowalność systemu ciągłego liniowego stacjonarnego Twierdzenie OSC LS1 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz obserwowalności, nazywana macierzą obserwowalności Kalmana ma rząd n, tzn. rząd systemu

Wymiar macierzy obserwowalnośći: nqxn; n – wymiar stanu, q – wymiar wyjścia Dla q=1 macierz obserwowalności jest macierzą kwadratową i dla sprawdzenia obserwowalności wystarczy sprawdzić nieosobliwość macierzy obserwowalności

Inne testy obserwowalności systemów ciągłych Dodatek A

Obserwowalność a przekształcenia podobieństwa Obserwowalność zostaje zachowana podczas transformacji podobieństwa

Odtwarzalność stanu Stan odtwarzalny Stan systemu liniowego jest odtwarzalny jeżeli można go określić znając wyjście dla chwil ze skończonego przedziału, Jeżeli każdy stan jest odtwarzalny, mówimy, że system jest całkowicie odtwarzalny lub krócej odtwarzalny

Dla systemów ciągłych obserwowalność i odtwarzalność są równoważne Odtwarzalność systemu ciągłego liniowego stacjonarnego Twierdzenie OtSC LS1 System liniowy stacjonarny jest odtwarzalny wtedy i tylko wtedy, gdy macierz odtwarzalnośći, nazywana macierzą odtwarzalności Kalmana ma rząd n, tzn. rząd systemu

Systemy dyskretne Obserwowalność stanu Stan obserwowalny Stan systemu liniowego jest obserwowalny jeżeli można go określić znając wyjście dla chwil ze skończonego przedziału, Jeżeli każdy stan jest obserwowalny, mówimy, że system jest całkowicie obserwowalny lub krócej obserwowalny

Obserwowalność systemu dyskretnego liniowego stacjonarnego Twierdzenie OSD LS1 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz obserwowalności, nazywana macierzą obserwowalności Kalmana ma rząd n, tzn. rząd systemu

Inne testy obserwowalności systemów dyskretnych Dodatek B

Dla systemów dyskretnych obserwowalność i odtwarzalność nie są równoważne Odtwarzalność systemu dyskretnego liniowego stacjonarnego Twierdzenie OtSD LS1 System liniowy stacjonarny jest odtwarzalny wtedy, gdy macierz odtwarzalności, nazywana macierzą odtwarzalności Kalmana ma rząd n, tzn. rząd systemu

Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych Przykład 1 Mamy system Liniowy, stacjonarny, 1 – wejście, 1 - wyjście

Transmitancja Zera i bieguny transmitancji Transmitancja po redukcji

Schemat blokowy modelu przestrzeni stanu

Schemat blokowy modelu w nowej przestrzeni stanu Transformacja do postaci diagonalnej Schemat blokowy modelu w nowej przestrzeni stanu

Cztery różne statusy zmiennych stanu: - v1  można na niego wpływać sterowaniem u i można go obserwować z wyjścia y - v2  nie można na niego wpływać sterowaniem u, ale można go obserwować z wyjścia y - v3  można na niego wpływać sterowaniem u, ale nie można go obserwować z wyjścia y - v4  nie można na niego wpływać sterowaniem u, ani nie można go obserwować z wyjścia y

Można wyróżnić cztery podsystemy: - związany ze zmienną stanu v1  sterowalny i obserwowalny - związany ze zmienną stanu v2  niesterowalny, ale obserwowalny - związany ze zmienną stanu v3  sterowalny, ale nieobserwowalny - związany ze zmienną stanu v4  niesterowalny i nieobserwowalny Stany niesterowalne i nieobserwowalne mogą być alb stabilne, albo niestabilne System, którego wszystkie stany niesterowalne są stabilne jest nazywany stabilizowalnym System, którego wszystkie stany nieobserwowalne są stabilne jest nazywany wykrywalnym

Dekompozycja na podprzestrzenie sterowalne/osiągalne Jeżeli system jest niesterowalny/nieosiągalny można go zdekomponować na część sterowalną i niesterowalną Twierdzenie o dekompozycji na podprzestrzenie sterowalne Jeżeli system liniowy stacjonarny o macierzach A, B i C nie jest sterowalny (tzn. A jest wymiaru nxn i rank(Mc = p < n) wówczas może być znalezione przekształcenie podobieństwa takie, że macierze systemu po transformacji mają postać gdzie, , a para macierzy {AC, BC} jest sterowalna, oraz

Dodatek C – Sposób znajdowania macierzy przekształcenia podobieństwa i przykład

Dekompozycja na podprzestrzenie obserwowalne/odtwarzalne Jeżeli system jest nieobserwowalny można go zdekomponować na część obserwowalną i nieobserwowalną Twierdzenie o dekompozycji na podprzestrzenie obserwowalna Jeżeli system liniowy stacjonarny o macierzach A, B i C nie jest obserwowalny (tzn. A jest wymiaru nxn i rank(Mo = p < n) wówczas może być znalezione przekształcenie podobieństwa takie, że macierze systemu po transformacji mają postać gdzie, , , a para macierzy {Ao, Bo} jest obserwowalna, oraz

Dodatek D – Sposób znajdowania macierzy przekształcenia podobieństwa i przykład

Dziękuję za uczestnictwo w wykładzie i uwagę

Inne testy sterowalności systemów ciągłych Dodatek A Inne testy sterowalności systemów ciągłych

Twierdzenie OSC LS2 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy nie istnieje żadem prawostronny wektor własny macierz A, taki że co oznacza, że żaden wektor własny macierz A nie jest ortogonalny do wszystkich kolumn macierz C

Twierdzenie OSC LS3 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz o wymiarze (r+n)xn ma rząd n dla dowolnego zespolonego skalara s Test obserwowalności w oparciu o twierdzenia 2 i 3 nosi nazwę testu Popov’a – Belevitch’a-Hautus’a

Twierdzenie OSC LS4 Diagonalny system liniowy stacjonarny z jednokrotnymi wartościami własnymi jest obserwowalny wtedy i tylko wtedy, gdy macierz C nie ma kolumn zerowych

Inne testy obserwowalności systemów dyskretnych Dodatek B Inne testy obserwowalności systemów dyskretnych

Twierdzenie OSD LS2 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy nie istnieje żadem prawostronny wektor własny macierz AD , taki że co oznacza, że żaden wektor własny macierz AD nie jest ortogonalny do wszystkich kolumn macierz CD

Twierdzenie OSD LS3 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz o wymiarze (r+n)xn ma rząd n dla dowolnego zespolonego skalara z Test sterowalności w oparciu o twierdzenia 2 i 3 nosi nazwę testu Popov’a – Belevitch’a-Hautus’a

Twierdzenie OSD LS4 Diagonalny system liniowy stacjonarny z jednokrotnymi wartościami własnymi jest obserwowalny wtedy i tylko wtedy, gdy macierz CD nie ma kolumn zerowych

Sposób znajdowania macierzy przekształcenia podobieństwa i przykład Dodatek C

Macierz transformacji Q może być utworzona w następujący sposób: Macierz MC ma wymiar n x nm, a ponieważ jest rządu p, można spośród jej kolumn wybrać p kolumn liniowo niezależnych Załóżmy, że będą to kolumny Następnie wybieramy n – p wektorów tak, aby macierz była nieosobliwa

Przykład 1. Rozważamy system dwuwymiarowy ( dwa wejścia, dwa wyjścia) Macierz sterowalności Kalmana Rząd macierzy Kalmana System jest niesterowalny

Dwie pierwsze kolumny macierzy sterowalności są liniowo niezależne, dobierzemy wektor Wówczas oraz Macierze systemu po transformacji podobieństwa

Macierze podsystemu sterowalnego Niesterowalna część systemu opisana równaniem stanu Macierz transmitancji systemu przed i po transformacji

Związki pomiędzy zmiennymi stanu Wartość własna części niesterowalne wynosi System jest stabilizowalny

Sposób znajdowania macierzy przekształcenia podobieństwa i przykład Dodatek D

Macierz transformacji P może być utworzona w następujący sposób: Macierz Mo ma wymiar nr x n, a ponieważ jest rządu p, można spośród jej wierszy wybrać p wierszy liniowo niezależnych Załóżmy, że będą to kolumny Następnie wybieramy n – p wektorów tak, aby macierz n x n była nieosobliwa

Przykład 2. Rozważamy system dwuwymiarowy ( 2 wejścia, dwa wyjścia) System jest sterowalny lecz nieobserwowalny – macierz obserwowalności Kalmana Rząd macierzy Kalmana System jest nieobserwowalny

Dwa pierwsze wiersze macierzy obserwowalności są liniowo niezależne, dobierzemy wektor Wówczas oraz Macierze systemu po transformacji podobieństwa

Macierze podsystemu obserwowalnego Macierz transmitancji systemu przed i po transformacji

Wartości własne systemu oryginalnego Podsystemu obserwowalnego Wartość własna części nieobserwowalnej wynosi System jest niewykrywalny