Wilhelm Conrad Roentgen Odkrycie promieni X Opracowanie: uczniowie ZS nr 12 pod kierunkiem nauczyciela fizyki mgr E. Żołnieruk.

Slides:



Advertisements
Podobne prezentacje
Promieniowanie Roentgen’a
Advertisements

Biuro Ochrony Rządu. Spis treści  Struktura i działanie  Formy działania i zakres uprawnień  Możliwości zatrudnienia  Informacje ogólne  Zarobki.
Przekształcanie jednostek miary
Równowaga chemiczna - odwracalność reakcji chemicznych
Światowy Dzień Zdrowia 2016 Pokonaj cukrzycę. Światowy Dzień Zdrowia 7 kwietnia 2016.
EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY I WEWNĘTRZNY KRZYSZTOF DŁUGOSZ KRAKÓW,
Telewizja (TV) – dziedzina telekomunikacji przekazuj ą ca ruchomy obraz oraz d ź wi ę k na odległo ść. W jednym miejscu za pomoc ą kamery telewizyjnej.
Spis treści Lupa, Lupa Lorneta, Lorneta Teleskop, Teleskop Laser, Laser Światłowody, Światłowody Soczewka, Soczewka Mikroskop, Mikroskop Dioda elektroluminescencyjna,
NIE TAKI KOMPUTER STRASZNY JAK GO MALUJĄ PODSTAWY OBSŁUGI KOMPUTERA.
Pole magnetyczne i elektryczne Ziemi
 Wzmacniacz słuchawkowy służy do wzmacniania sygnału audio i przesyłania go do słuchawek. Ma zadanie zapobiegać niedoborowi mocy, która powoduje spadek.
Paulina Ziębiec ZiIP WGIG Fizyka współczesna Kraków,
Choroby związane ze złym odżywianiem.. Jakie są choroby związane ze złym odżywianiem się ?
Zajęcia 1-3 Układ okresowy pierwiastków. Co to i po co? Pojęcie masy atomowej, masy cząsteczkowej, masy molowej Proste obliczenia stechiometryczne. Wydajność.
ŚRODOWISKO PONAD WSZYSTKO Mała bateria-duży problem.. Co roku w Polsce sprzedaje się około 300 mln baterii. Wyrzucanie ich do kosza negatywnie wpływa.
Pionierka ogół umiejętności związanych z budowaniem przez harcerzy.
Mechanika płynów. Prawo Pascala (dla cieczy nieściśliwej) ( ) Blaise Pascal Ciśnienie wywierane na ciecz rozchodzi się jednakowo we wszystkich.
Teoria Bohra Paula Augustyn ZiIP Gr. I. Niels Henrik David Bohr Ur. 7 października 1885 w Kopenhadze Zm. 18 listopada 1962 r. Kopenhadze. 1912r. Doktor.
Spektroskopia Ramana dr Monika Kalinowska. Sir Chandrasekhara Venkata Raman ( ), profesor Uniwersytetu w Kalkucie, uzyskał nagrodę Nobla w 1930.
Excel 2007 dla średniozaawansowanych zajęcia z dnia
Czynniki występujące w środowisku pracy.. Cele lekcji Po zajęciach każdy uczeń: - Nazywa i wymienia czynniki występujące w środowisku pracy, - Wymienia.
Przemiany energii w ruchu harmonicznym. Rezonans mechaniczny Wyk. Agata Niezgoda Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Dlaczego boimy się promieniotwórczości?
Przemiana chemiczna to taka przemiana, w wyniku której z kilku (najczęściej dwóch) substancji powstaje jedna nowa lub dwie nowe substancje o odmiennych.
Dyfrakcja elektronów Agnieszka Wcisło Gr. III Kierunek Zarządzanie i Inżynieria Produkcji Wydział Górnictwa i Geoinżynierii Katedra Ekonomiki i Zarządzania.
Blok I: PODSTAWY TECHNIKI
Scenariusz lekcji chemii: „Od czego zależy szybkość rozpuszczania substancji w wodzie?” opracowanie: Zbigniew Rzemieniuk.
Astronomia Ciała niebieskie. Co to jest Ciało niebieskie ?? Ciało niebieskie - każdy naturalny obiekt fizyczny oraz układ powiązanych ze sobą obiektów,
Badania elastooptyczne Politechnika Rzeszowska Katedra Samolotów i Silników Lotniczych Ćwiczenia Laboratoryjne z Wytrzymałości Materiałów Temat ćwiczenia:
WSPÓŁRZĘDNE GEOGRAFICZNE.  Aby określić położenie punktu na globusie stworzono siatkę geograficzną, która składa się z południków i równoleżników. Południk.
Woda to jeden z najważniejszych składników pokarmowych potrzebnych do życia. Woda w organizmach roślinnych i zwierzęcych stanowi średnio 80% ciężaru.
… przemy ś lenia pedagogiczne. „Najważniejszym okresem w życiu nie są lata studiowania na wyższej uczelni, ale te najwcześniejsze, czyli okres od narodzenia.
Doświadczenie Michelsona i Morleya Monika Wojciechowska II stopnień ZiIP Grupa 3.
Znaki ostrzegawcze uprzedzają o miejscach na drodze, w których występuje lub może występować niebezpieczeństwo albo przeszkody. Znaki te zobowiązują uczestników.
Jak sobie z nim radzić ?.
ENERGIA to podstawowa wielkość fizyczna, opisująca zdolność danego ciała do wykonania jakiejś pracy, ruchu.fizyczna Energię w równaniach fizycznych zapisuje.
Radosław Stefańczyk 3 FA. Fotony mogą oddziaływać z atomami na drodze czterech różnych procesów. Są to: zjawisko fotoelektryczne, efekt tworzenie par,
Promieniowanie rentgenowskie Fizyka współczesna Dawid Sekta WGiG IV gr. 4 Kraków,
Teoria Bohra atomu wodoru Agnieszka Matuszewska ZiIP, Grupa 2 Nr indeksu
POLARYZACJA ŚWIATŁA Jeśli światło przepuścimy przez polaryzator, to większość drgań zostanie wygaszona, ponieważ ten przepuszcza jedynie idealnie równoległe.
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Zjawisko fotoelektryczne zewnętrzne i wewnętrzne
Półprzewodniki i urządzenia półprzewodnikowe Elżbieta Podgórska Zarządzanie i Inżynieria Produkcji Wydział Górnictwa i Geoinżynierii Gr 3, rok 4
- nie ma własnego kształtu, wlana do naczynia przybiera jego kształt, - ma swoją objętość, którą trudno jest zmienić tzn. są mało ściśliwe (zamarzając.
Analiza spektralna. Laser i jego zastosowanie.
Konrad Benedyk Zarządzanie i Inżynieria Produkcji 1 rok, II stopień
NANOTECHNOLOGIE Wojciech Gumiński
Czym jest gramofon DJ-ski?. Gramofon DJ-ski posiada suwak Pitch służący do płynnego przyspieszania bądź zwalniania obrotów talerza, na którym umieszcza.
KATOWNIA NA SZUCHA.
Pole magnetyczne Magnes trwały – ma dwa bieguny - biegun północny N i biegun południowy S.                                                                                                                                                                     
Własności elektryczne materii
Bezpieczeństwo przy pracy z ciekłym azotem
NAJCZĘSTSZYCH CHORÓB UKŁADU KRĄŻENA 5. Nadciśnienie tętnicze.
Cząstki elementarne. Model standardowy Martyna Bienia r.
Źródło:
Papierosy to zła rzecz, z nim zdrowie idzie precz!!! Autor: Weronika Pączek.
Masery i lasery. Zasada działania i zastosowania.
Monika Hołowacz. Obecnie nie ma już wątpliwości, że palenie papierosów szkodliwie działa na zdrowie człowieka. Gdy pali dziecko, konsekwencje uzależnienia.
Wykorzystanie zasad optyki w naszym ż yciu. Dzięki zasadą optyki człowiek stworzył tak niezbędne każdej współczesnej kobiecie lustra.
M ETODY POMIARU TEMPERATURY Karolina Ragaman grupa 2 Zarządzanie i Inżynieria Produkcji.
Promieniowanie jonizujące. Co to jest promieniotwórczość?
Temat: Właściwości magnetyczne substancji.
Fale Elektromagnetyczne
Wykład IV Zakłócenia i szumy.
Największe i najmniejsze (cz. I)
Innowacyjność w medycynie – nowoczesne technologie w służbie zdrowia.
PRZYKŁADY Metody obrazowania obiektów
Zapis prezentacji:

Wilhelm Conrad Roentgen Odkrycie promieni X Opracowanie: uczniowie ZS nr 12 pod kierunkiem nauczyciela fizyki mgr E. Żołnieruk

Urodził się 27 marca 1845 w Lennep (obecnie część Remscheid), zmarł 10 lutego 1923 w Monachium)1845

Fizyk niemiecki, laureat Nagrody Nobla. Studiował inżynierię w Holandii. W 1869 r. uzyskał doktorat na uniwersytecie w Zurychu, gdzie zajmował się badaniami nad ciepłem właściwym i wyładowaniami elektrycznymi. W roku 1888 został profesorem w Instytucie Fizyki w Würzburgu w Bawarii (obecnie Niemcy).

W r. u z y s k a ł d o k t o r a t n a u n i w e r s y t e c i e w Z u r y c h u.

Właśnie tam w 1895r. Roentgen dokonał odkrycia, które przyniosło mu sławę.

8 listopada 1895 odkrył nowy typ promieniowania, które sam nazwał promieniowaniem X (x – ponieważ "X" oznacza niewiadomą). Za to odkrycie w roku 1901 został uhonorowany pierwszą nagrodą Nobla z dziedziny fizyki. Innymi tematami jego prac były: krystalografia i fizyka płynów

Fizyka płynów - to dziedzina fizyki zajmująca się badaniem ruchliwości płynów oraz skutkami ruchów płynów, rozpatrując je głównie w skali mikroskopowej w celu uzupełnienia opisu makroskopowego. Analizując zachowanie pojedynczych cząsteczek stara się przewidzieć potencjalne zachowanie płynów oraz wyjaśnić intrygujące fenomeny związane z płynami. Krystalografia - dział nauki zajmujący się opisem, klasyfikacją i badaniem kryształów, krystalitów oraz substancji o strukturze częściowo uporządkowanej. Jej zakres pokrywa się częściowo z mineralogią, fizyką ciała stałego, chemią i materiałoznawstwem.

Pracownia Conrada Rentgena

Obserwacje promieni katodowych rozpoczął podczas eksperymentów z lampami próżniowymi. Roentgen natychmiast przystąpił do doświadczeń, których celem miało być zbadanie owego zjawiska. Przypadkowo niedaleko zestawu doświadczalnego położył tekturkę pokrytą fluorescencyjnym minerałem. Naukowiec zauważył, iż zaczyna on świecić w ciemności, gdy źródło promieni katodowych jest włączone.

Było to pierwsze publiczne ogłoszenie istnienia promieni rentgenowskich. Roentgen zaproponował dla nich nazwę promieni X, obowiązującą do chwili obecnej w większości krajów (m.in. w krajach anglosaskich). 28 grudnia 1895 roku opublikował on wyniki swoich badań w czasopiśmie Würzburgskiego Towarzystwa Fizyczno-Medycznego. Wilhelm Conrad Roentgen Roentgen skonstruował pierwszą lampę wytwarzającą promienie X i zbadał własności tego promieniowania. Za swe odkrycie otrzymał w 1901 roku nagrodę Nobla.

 Twarde promieniowanie rentgenowskie- długość fali od 5 pm do 100 pm  Miękkie promieniowanie rentgenowskie rentgenowskie- długość fali od 0,1 nm do 10 nm znajduje się pomiędzy ultrafioletem i promieniowaniem gamma. Prześwietlenie ręki promieniami Roentgena. Ilustracja pochodzi z roku 1896

Prototyp lampy Rentgenowskiej

Schemat lampy rentgenowskiej Emitowane wskutek ruchów termicznych z rozżarzonej katody elektrony przyspieszane są w polu elektrycznym panującym w przestrzeni pomiędzy anodą i katodą. Lampę stanowi bańka szklana z której wypompowane jest powietrze, tj. panuje wysoka próżnia. Wewnątrz znajdują się dwie elektrody: katoda K i anoda A. Elektrody połączone są ze źródłem wysokiego napięcia, rzędu kilkudziesięciu tysięcy wolt lub nawet większych. Dodatni biegun połączony jest z anodą, ujemny z katodą. Katodę stanowi zwykle włókno wolframowe, które w czasie pracy lampy rozżarzone jest wskutek przepływu prądu z dodatkowego źródła żarzenia. W materiale anody elektrony są wyhamowywane w polu elektrycznym jąder atomów materiału stanowiącego anodę

Elektrony poruszające się z dużymi prędkościami, padając na metalową płytę, są bardzo szybko wyhamowywane. Tracą więc znaczną energie, emitując wysokoenergetyczny foton promieniowania X. Jak wytłumaczyć powstawanie promieni X Miejsce, na które pada wiązka elektronów staje się źródłem promieniowania X.

Promieniowania X powstają przy uderzeniu przyspieszanych elektronów o powierzchnie metali o dużym ładunku jądra. Pierwotnie powstaje tak zwane promieniowanie hamowania o widmie ciągłym, które na drodze procesu wzbudzania wywołuje wtórne widmo prążkowe o budowie charakterystycznej dla materiału hamującego elektrony. Promieniowanie X powstaje także w wyniku wychwytu elektronu, gdy jądro przechwytuje elektron znajdujący się na powłoce K, w wyniku czego powstaje wolne miejsce, na które spadają elektrony z wyższych powłok i następuje emisja kwantu X.

W styczniu 1896 roku w Dartmouth w New Hempshire posłużono się pierwszy raz promieniami X w celu właściwego nastawienia złamanej ręki Eddiego McCarthy. Lekarze zyskali nowe potężne narzędzie w walce z urazami i chorobami.

- emulsje fotograficzne są czułe na promienie X, powodujące zaczernienie kliszy Własności promieniowania X: - wszelkie substancje są dla promieni X w mniejszym lub większym stopniu przejrzyste - są niewidzialne, ale wywołują fluorescencję - wywołują jonizację powietrza - wiele substancji fosforyzuje przy naświetlaniu promieniami X

- padając na ciało naelektryzowane powodują, że ciało to traci ładunek - w próżni mają prędkość światła -ich tor nie zakrzywia się w polu magnetycznym ani elektrycznym - rozchodzą się po liniach prostych,

Przenika przez szkło, czarny papier a nawet przez płytki metalowe. Promieni X przechodząc przez metal ulegają pochłanianiu.

Zastosowanie promieniowania X 1. W medycynie Aktualnie lekarze oraz stomatolodzy bardzo często używają promieni rentgenowskich do prześwietlania, Np. zębów, kończyn.

Radiografia cyfrowa Nowoczesne urządzenia rentgenowskie wyposażone w tak zwany tor wizyjny składający się ze wzmacniacza obrazu, kamery wideo, łączącego je układu optycznego oraz komputera, umożliwiają uzyskiwanie obrazu cyfrowego bezpośrednio w czasie rzeczywistym. Dzięki temu jest możliwa wizualizacja nie tylko struktury ale także czynności narządów, a w szczególności układu krążenia. Procedura otrzymywania i przetwarzania radiologicznych obrazów cyfrowych nazywa się radiografią cyfrową.

Współczesna radiografia ukazuje nam wnętrze ludzkiego ciała z dokładnością zbliżoną do atlasów anatomicznych. Tomografia komputerowa umożliwia neurochirurgom precyzyjne planowanie zabiegów operacyjnych.

Znakowanie izotopowe Znakowanie izotopowe jest to proces zamiany w związku chemicznym trwałego jądra, wysyłającym promieniowanie izotopem promieniotwórczym tego samego pierwiastka, dzięki czemu można śledzić drogę tego atomu wewnątrz układu biologicznego lub mechanicznego. Znakowanie izotopowe stosuje się w badaniach:  nerek,  tarczycy,  kości,  płuc,  serca.

Tomografia pozytywowa Emisyjna tomografia pozytonowa w skrócie PET polega na wstrzykiwaniu pacjentowi promieniotwórczego izotopu wysyłającego promieniowanie beta plus co prowadzi do anihilacji i emisji fotonów, wykrywanej w kolejnych warstwach. W badaniu korzysta się z pierwiastków, wbudowanych do określonych cząsteczek, np. glukozy, wody, amoniaku lub leków, które zostają wprowadzone do organizmu pacjenta drogą żylną lub przez inhalację.

Radioterapia Radioterapia polega na wykorzystaniu promieniowania jonizującego - na przykład promieni Roentgena - do niszczenia komórek rakowych. Stosowanie napromieniania wymaga precyzyjnego ustalenia dawki i pola naświetlań, by zminimalizować uszkadzanie zdrowych tkanek. Jest to zadanie onkologów radioterapeutów.

Tomografiakomputerowa Tomografia komputerowa Tomografia polega na wykonywaniu kolejnych zdjęć rentgenowskich sterowanych komputerem badanego narządu w różnych płaszczyznach i pod różnym kątem. Pozwala to uzyskać warstwowy obraz, przedstawiający bardzo dokładnie nawet niewielkie zmiany chorobowe.

2. W astronomii Słońce, ciała niebieskie a także inne ciała we wszechświecie (m.in. czarne dziury) są naturalnymi źródłami promieni rentgenowskich. Na około naszej planety krążą satelity, na których umieszczone są teleskopy, dzięki którym możemy wykrywać promieniowania x, które jest wysyłane. Satelity wysyłają obrazy rentgenowskie na nasza planetę. Astronomie dzięki temu poszerzają swoją dotychczasowe informacje na temat przestrzeni kosmicznej.

Rentgenowski obraz Słońca uzyskany przez satelitę.

3. W portach lotniczych Porty lotnicze zaopatrzone są w aparaturę rentgenowską, która służy do prześwietlania bagaży. Po prześwietleniu bagaży promienie X są zbierane przez detektory. Stosując te promienie, komputer pokazuje na ekranie to co się znajduje w naszej torbie. To wszystko powoduje, że wcześniej można wykryć przemyt, m.in. broni albo przekonać się, czy do samolotu ktoś próbuje wnieść bombę. Pistolet

4. W defektoskopii Defektoskopia rentgenowska polega na nieniszczących badaniach metali, które mają na celu wykrycie wewnętrznych wad materiału (pęknięć, pęcherzy, zanieczyszczeń itp.). 5. W budownictwie W budownictwie promieniowanie stosuje się przy spawaniu rurociągów a zwłaszcza przy budowie konstrukcji stalowych gdzie istotna jest wytrzymałość.

Prześwietlanie promieniami rentgenowskimi znalazło szerokie zastosowanie w technice (defektoskopia). Obecnie promienie rentgenowskie stosuje się szeroko zarówno w medycynie — do celów diagnostyki i terapii — jak i w przemyśle — do kontroli jakości odlewów, złącz spawanych itp. — i to nie tylko w laboratoriach zakładowych, lecz także bezpośrednio w halach produkcyjnych. Metody rentgenowskiej analizy strukturalnej stosuje się szeroko do badania metali, stopów, minerałów i innych obiektów. Promieniowanie w technice

- - inżynierowie prześwietlają kadłub samolotu w poszukiwaniu pęknięć, które mogłyby spowodować wypadek. - każdy odbiornik telewizyjny emituje promienie X, które jednak nie przedostają się przez szybę odbiornika - używane są w fizyce jądrowej (mikroskopy elektronowe, cyklotrony, akcelatory) - - wykorzystywane są w badaniach pierwiastkowego składu chemicznego substancji oraz struktur kryształów - - umożliwiają obserwację przyćmionych ciał, np. pulsarów Inne zastosowanie promieni X:

 Promienie X zostały odkryte w 1895 roku przez Wilhelma Roentgena.  Promienie X przenikają w różnym stopniu przez różne materiały.  Są one falami elektromagnetycznymi o dużo większej częstotliwości od światła widzialnego.  Można je uzyskać wyhamowywując elektrony na metalowej płycie. Naświetlanie promieniami rentgenowskimi zabija komórki nowotworowe, co wykorzystuje się w radioterapii. Przyjęcie dużej dawki promieniowania może powodować oparzenia i chorobę popromienną. ZAPAMIĘTAJ !

Od 2004r. jego nazwisko znalazło się w nazwie pierwiastka chemicznego roentgen, znanego dotychczas jako unununium. Na jego cześć jednostkę dawki promieniowania jonizującego nazwano rentgenem. Również przyrządy do prześwietleń wykorzystujące promieniowanie rentgenowskie nazywa się po prostu rentgen. Ciekawostki…

Zdjęcia rentgenowskie

Monachium –śmierć uczonego.