Potencjały termodynamiczne PotencjałParametryWarunek S (II zasada)U,V(dS) U,V ≥ 0 U (I zasada)S,V(dU) S,V ≤ 0 H = U + pVS, p(dH) S,p ≤ 0 F = U - TST, V(dF)

Slides:



Advertisements
Podobne prezentacje
DRUGA ZASADA TERMODYNAMIKI
Advertisements

Entropia Zależność.
Wykład Temperatura termodynamiczna 6.4 Nierówność Clausiusa
Wykład Mikroskopowa interpretacja entropii
Stała równowagi reakcji Izoterma van’t Hoffa
TERMODYNAMIKA CHEMICZNA
TERMODYNAMIKA CHEMICZNA
RÓWNANIE CLAUSIUSA-CLAPEYRONA
Wykład 10 7 Równanie stanu oraz ogólne relacje termodynamiczne
procesy odwracalne i nieodwracalne
WYKŁAD 7 Potencjał chemiczny
TERMODYNAMIKA CHEMICZNA
ENTALPIA - H [ J ], [ J mol -1 ] TERMODYNAMICZNA FUNKCJA STANU dH = H 2 – H 1, H = H 2 – H 1 Mgr Beata Mycek - Zakład Farmakokinetyki i Farmacji Fizycznej.
TERMODYNAMIKA CHEMICZNA
Wykład Fizyka statystyczna. Dyfuzja.
Podstawy termodynamiki
Zależność entropii od temperatury
Absorpcja i Ekstrakcja
Termodynamika układów reagujących – podsumowanie
Wpływ ciśnienia na położenie stanu równowagi (1)
Kinetyczna Teoria Gazów Termodynamika
Silnik cieplny > TII Równanie bilansu energii:
Podstawy termodynamiki Gaz doskonały
Potencjał chemiczny składników w mieszaninie (1)
Swobodna ekspansja gazu – przykład procesu nieodwracalnego
I ZASADA TERMODYNAMIKI
Standardowa entalpia z entalpii tworzenia
Równowaga fazowa czystej substancji (9)
Termodynamics Heat, work and energy.
Wykład VIII Termodynamika
Wykład Równanie Clausiusa-Clapeyrona 7.6 Inne równania stanu
FIZYKA dla studentów POLIGRAFII Statystyka ruchów cieplnych
FIZYKA dla studentów POLIGRAFII Dynamika procesów cieplnych
FIZYKA dla studentów POLIGRAFII Dynamika procesów cieplnych
FIZYKA dla studentów POLIGRAFII Układy i procesy termodynamiczne
FIZYKA dla studentów POLIGRAFII Przejścia fazowe Zjawiska transportu
Kinetyczno-molekularna teoria budowy gazu
Wykład 9 Wielki zespół kanoniczny i pozostałe zespoły
Wykład 3 STANY SKUPIENIA MATERII.
MECHANIKA PŁYNÓW Uniwersytet Przyrodniczy w Poznaniu
Podstawy Biotermodynamiki
Podsumowanie i wnioski
Gaz doskonały i nie tylko
chemia wykład 3 Przemiany fazowe substancji czystych
Modelowanie fenomenologiczne II
TERMODYNAMIKA – PODSUMOWANIE WIADOMOŚCI Magdalena Staszel
Wstęp do termodynamiki roztworów
Kinetyczna teoria gazów
Prof. dr hab. inż. Jerzy Petera Katedra Termodynamiki Procesowej
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii.
Reguła przekory – ostrzeżenie (3)
5. Równanie stanu gazu doskonałego.
Rozkład Maxwella i Boltzmana
Wiadomości organizacyjne Tadeusz Hofman, Zakład Chemii Fizycznej, p. 148, Gmach Chemii Materiały internetowe:
Entropia gazu doskonałego
Średnia energia Średnia wartość dowolnej wielkości A wyraża się W przypadku rozkładu kanonicznego, szczególnie zwartą postać ma wzór na średnią wartość.
W. P. Atkins, Chemia fizyczna, PWN, 2001
Równanie van der Waalsa (1) udział odpychający udział przyciągający.
Funkcja podziału. Cudowny łącznik Parę uwag o I Zasadzie Termodynamiki Ponieważ pierwszy wyraz jest różniczkową pracą objętościową w procesie odwracalnym,
Gaz rzeczywisty ?. p [Atm]pV [Atm·l] l azotu w warunkach normalnych, T = 273 K = const. 1 Atm = 1.01·10.
DYFUZJA.
Druga zasada termodynamiki praca ciepło – T = const? ciepło praca – T = const? Druga zasada termodynamiki stwierdza, że nie możemy zamienić ciepła na pracę.
Rudolf Julius Emmanuel Clausius ( ) Ludwig Eduard Boltzmann ( )
TERMODYNAMIKA.
9. Termodynamika 9.1. Temperatura
PODSTAWY MECHANIKI PŁYNÓW Makroskopowe własności płynów
Chemia fizyczna /17.
Równowaga cieczy i pary nasyconej
Wzory termodynamika www-fizyka-kursy.pl
Zapis prezentacji:

Potencjały termodynamiczne PotencjałParametryWarunek S (II zasada)U,V(dS) U,V ≥ 0 U (I zasada)S,V(dU) S,V ≤ 0 H = U + pVS, p(dH) S,p ≤ 0 F = U - TST, V(dF) T,V ≤ 0 G = H - TST, p(dG) T,p ≤ 0

Wnioski z I i II Zasady Termodynamiki 1. Istnieją funkcje (potencjały termodynamiczne), których zmiana, przy stałości dwóch parametrów, decyduje o kierunku procesu; potencjał termodynamiczny osiąga minimum (maksimum) w stanie równowagi. 3. Można wyprowadzić liczne tożsamości, wyrażające związki pomiędzy funkcjami termodynamicznymi, umożliwiające obliczanie ich zmian podczas rzeczywistych procesów. 2. Daje to możliwość znajdywania związków między parametrami w stanie równowagi.

Zależność entropii od temperatury

Jak wyznaczyć entropię? cpcp lnT lnT 1 lnT 0

III Zasada Termodynamiki Jeśli przyjmiemy, że S(T=0) = 0 - postulat ten nosi nazwę III Zasady Termodynamiki W termodynamice statystycznej wymóg ten jest zbyteczny, bo dla S(Ω =1) = kln(1) = 0 i ten stan odpowiada T = 0

Sformułowanie Plancka (1911) T → 0, S → 0 Sformułowanie Nernsta (1905) T → 0, ∆S → 0 Niektóre konsekwencje: c p → 0 dla T → 0 niemożność osiągnięcia T = 0!

Termodynamika układów otwartych Bilans energii: dU = – pdV + TdS + …… ? przecież U zmienia się w wyniku transportu masy!!!!

Potencjał chemiczny Potencjał chemiczny - ma charakter siły uogólnionej, - jest miarą wpływu zmiany liczby moli na energię wewnętrzną, est parametrem intensywnym

Różniczka zupełna energii wewnętrznej

Równowaga w układzie wieloskładnikowym i wielofazowym (1) U, V, N = const układ jako całość izolowany, poszczególne fazy nie są izolowane względem siebie; możliwe: przekazywanie energii wewnętrznej (na sposób ciepła), zmiana objętości (praca objętościowa) i przenoszenie masy (dyfuzja składników) U = U  + U  = const V = V  + V  = const N i = N i  + N i  = const αβ W warunkach równowagi entropia całego układu osiąga maksimum! izolacja od otoczenia

Równowaga w układzie wieloskładnikowym i wielofazowym (2) U, V, N = const U = U  + U  V = V  + V  N i = N i  + N i  αβ W warunkach równowagi dS = dS α + dS β = 0

Równowaga w układzie wieloskładnikowym i wielofazowym (3) U, V, N = const U = U  + U  V = V  + V  N i = N i  + N i  αβ Parametrami niezależnymi są tylko te, odnoszące się do jednej fazy - α albo β: dU  + dU  = 0 dV  + dV  = 0 dn i  + dn i  = 0 Konieczność zerowania się pochodnych cząstkowych! Parametrami niezależnymi są tylko te, odnoszące się do jednej fazy - α albo β: dU  = - dU  dV  = - dV  dn i  = - dn i 

Równowaga w układzie wieloskładnikowym i wielofazowym (4) p  = p  = p  =... = p T  = T  = T  =... = T  i  =  i  =  i  =... =  i (dla każdej fazy) (dla każdego składnika i = 1, 2, 3,...,k)

Warunki stabilności – warunki konieczne występowania maksimum entropii warunek stabilności termicznej: c v ≥ 0 warunek stabilności mechanicznej:

Reguła faz (1) Układ składa się z f faz i n składników liczba parametrów intensywnych = 2 + f(n - 1) [T,p + ułamki molowe dla każdej z faz] Równowaga w układzie wieloskładnikowym i wielofazowym wynika z wartości parametrów intensywnych (T, p, μ i ) i w związku z czym nie zależy od wielkości układu. Parametry intensywne określające stan układu to – T, p, stężenia (a nie liczby moli!) Stężenia mogą być różnie zdefiniowane – np. ułamki molowe – x k = n k /∑n i Dla układu n-składnikowego mamy n-1 niezależnych stężeń liczba parametrów niezależnych (stopni swobody układu - ) = liczba parametrów – liczba równań = 2 + f(n-1) - n(f-1)  i  =  i  =  i  =... =  i (dla każdego składnika i = 1, 2, 3,...,k) liczba równań wiążących te parametry = n(f - 1) [równość potencjałów chemicznych] = 2 + nf – f – nf + n = n f

Reguła faz (2) = n f Przykład 1: Substancja czysta, równowaga ciecz-para = – 2 = 1 Parametry: T, p Związek pomiędzy parametrami μ c (T,p) = μ g (T,p)

Reguła faz (3) = n f Przykład 2: Maksymalna liczba faz, które mogą współistnieć w równowadze - f max f = n f max = n ( min = 0) = n + 2 Dla substancji czystej f max = 3 (punkt potrójny)

Warunki równowagi - przykład c Jakie równania muszą być spełnione, aby poniższy układ znajdował się w stanie równowagi? g (s) – NaCl (c) – H 2 O + NaCl + aceton (Ac) (g) – H 2 O + aceton + powietrze 1. Równość T = (T c = T s = T g ) 2. Równość p = (p c = p s = p g ) 3. μ s N aCl = μ c N aCl 4. μ c H2O = μ g H2O 5. μ c Ac = μ g Ac s

Konsekwencje I i II Zasady (2) Termodynamiczne równanie stanu (1) U = F + TS bo F jest potencjałem termodynamicznym dla (T,V) ciśnienie wewnętrzne Termodynamiczne równanie stanu

Dla gazu doskonałego Konsekwencje I i II Zasady (3) Termodynamiczne równanie stanu (2) Podobnie dla Wniosek – energia wewnętrzna i entalpia gazu doskonałego zależą tylko od temperatury Entalpia dla gazu doskonałego co można wyprowadzić z założeń molekularnych

Potencjały termodynamiczne PotencjałParametryWarunek S (II zasada)U,V(dS) U,V ≥ 0 U (I zasada)S,V(dU) S,V ≤ 0 H = U + pVS, p(dH) S,p ≤ 0 F = U - TST, V(dF) T,V ≤ 0 G = H - TST, p(dG) T,p ≤ 0

Porównanie izotermy i adiabaty odwracalnej dla tlenu opisywanych równaniem gazu doskonałego

Silniki cieplne

Silniki cieplne – schematyczny wykres pracy maszyny cieplnej Z. Wrzesiński, Termodynamika, OWPW, 2002

Silniki cieplne – silnik Stirlinga

Schemat pracy silnika cieplnego (a) i chłodziarki (b) Z. Wrzesiński, Termodynamika, OWPW, 2002 (a) (b)

Schemat pracy pompy ciepła Z. Wrzesiński, Termodynamika, OWPW, 2002

Obieg Carnota Z. Wrzesiński, Termodynamika, OWPW, 2002

Obieg Otto Z. Wrzesiński, Termodynamika, OWPW, 2002

Obieg Diesla Z. Wrzesiński, Termodynamika, OWPW, 2002

Oddziaływania międzycząsteczkowe – zależność współczynnika kompresji od ciśnienia Z p Z=1 V < V id – dominacja sił przyciągających V > V id – dominacja sił odpychających T=const

Współczynnik kompresji

Współczynnik kompresji N2N2

Potencjał oddziaływania dwóch cząsteczek r σ

Potencjał Lennarda-Jonesa udział przyciągający udział odpychający

Równanie van der Waalsa (1) udział odpychający udział przyciągający

Równanie van der Waalsa (2) Postać matematyczna – równanie sześcienne względem V Możliwe wielokrotne pierwiastki względem V!

Równanie van der Waalsa (3) Zasada równych pól Maxwella: S 1 = S 2 p V T=const S1S1 S2S2 VcVc VgVg niemożliwe, bo (∂p/∂V) T > 0!!!

Równanie van der Waalsa (4) Izotermy van der Waalsa dla H 2 O T k = 647,3K p k = 220,5 bar V k = 56 cm 3 /mol punkt krytyczny

Równanie van der Waalsa (5) Izotermy van der Waalsa dla H 2 O

Równanie van der Waalsa (6) Izotermy van der Waalsa dla H 2 O

równanie van der Waalsa skąd wziąć parametry? Izotermy van der Waalsa dla H 2 O

równanie van der Waalsa – parametry z właściwości stanu krytycznego T k = 8a/27Rb p k = a/27b 2 V k = 3b warunek matematyczny punktu krytycznego: parametry van der Waalsa w funkcji parametrów krytycznych: parametry krytyczne w funkcji parametrów van der Waalsa:

zredukowane równanie van der Waalsa parametry zredukowane zredukowane równanie van der Waalsa Jest to jedna z form ZASADY STANÓW ODPOWIADAJACYCH SOBIE - warunek stosowalności – dwuparametrowa funkcja potencjału

Potencjał Lennarda-Jonesa

Wady równania van der Waalsa Niedokładności w ilościowym opisie stanu krytycznego (błędna wartość Z k = 3/8 = 0,375). równowagi ciecz-para. właściwości cieczy.

Błędy równania van der Waalsa Izotermy van der Waalsa dla H 2 O V k = 56 cm 3 /mol

Redlich-Kwong Soave-Redlich-Kwong wprowadzenie nowego parametru - współczynnika acentrycznego