Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Ineligentne systemy obliczeniowe1 Sztuczna inteligencja Prof. Dr hab. Marek Rudnicki Katedra Systemów Ekspertowych i Sztucznej Inteligencji Dyżury dla.

Podobne prezentacje


Prezentacja na temat: "Ineligentne systemy obliczeniowe1 Sztuczna inteligencja Prof. Dr hab. Marek Rudnicki Katedra Systemów Ekspertowych i Sztucznej Inteligencji Dyżury dla."— Zapis prezentacji:

1 Ineligentne systemy obliczeniowe1 Sztuczna inteligencja Prof. Dr hab. Marek Rudnicki Katedra Systemów Ekspertowych i Sztucznej Inteligencji Dyżury dla studiów niestacjonarnych: sobota, godz. 12:00 – 13:00 pok. B324 Portal autorski: Hasło: marek_rudnicki Zawartość portalu: ogłoszenia oraz informacje godziny dyżurów pliki do pobrania (na hasło)

2 Ineligentne systemy obliczeniowe2 Wpływ informatyki na funkcjonowaniu społeczeństw jest widoczny: rozpowszechnianie się komputerów, systemów informatycznych, edytorów tekstu, arkuszy kalkulacyjnych itd... Ważną cecha informatyki jest ułatwianie samego programowania i czynienie programowania bardziej niezawodnym Zasadniczo jednak informatyka jest nauką o abstrakcji, czyli nauką o tworzeniu właściwego modelu reprezentującego problem i wynajdowaniu odpowiedniej techniki mechanicznego jego rozwiązywania Informatycy tworzą abstrakcje rzeczywistych problemów w formie zrozumiałej dla komputera i jednocześnie w taki sposób aby mogły być rozumiane i przetwarzane w pamięci komputera Informatyka: mechanizacja abstrakcji

3 Ineligentne systemy obliczeniowe3 Abstrakcja oznaczać będzie pewne uproszczenie, zastąpienie skomplikowanych i szczegółowych okoliczności występujących w świecie rzeczywistym zrozumiałym modelem umożliwiającym rozwiązanie naszego problemu. Oznacza to że abstrahujemy od szczegółów które nie maja wpływu lub mają minimalny wpływ na rozwiązanie problemu. Opracowanie odpowiedniego modelu ułatwia zajęcie się istotą problemu. modele danych: abstrakcje wykorzystywane do opisywania problemów struktury danych: konstrukcje języka programowania wykorzystywane do reprezentowania modelów danych. Przykładowo język C udostępnia wbudowane abstrakcje takie jak struktury czy wskaźniki, które umożliwiają reprezentowanie skomplikowanych abstrakcji takich jak grafy algorytmy: techniki wykorzystywane do otrzymywania rozwiązań na podstawie operacji wykonywanych na danych reprezentowanych przez abstrakcje modelu danych, struktury danych lub na inne sposoby Informatyka: mechanizacja abstrakcji

4 Ineligentne systemy obliczeniowe4 Trochę historii... trochę przyszłości Teoretyczne podstawy informatyki Algorytm Euklidesa, krosno Jacquarda, maszyny Babbage, algorytmika, komputery..... Oprogramowanie wielkich eksperymentów fizycznych.... czyli wyznawanie dla współczesnej informatyki stosowanej

5 Ineligentne systemy obliczeniowe5 Pomiędzy 400 a 300 rokiem p.n.e wielki grecki matematyk Euklides wynalazł algorytm znajdowania największego wspólnego dzielnika (nwd) dwóch dodatnich liczb całkowitych. Szczegóły algorytmu są nieistotne: algorytm Euklidesa uważa się za pierwszy kiedykolwiek wymyślony niebanalny algorytm. Słowo algorytm wywodzi się od nazwiska perskiego matematyka Muhammeda Alchwarizmi (łac. Algorismus), który żył w IX wieku p.n.e i któremu przypisuje się podanie reguł dodawania, odejmowania, mnożenia i dzielenia zwykłych liczb dziesiętnych. Jedną z najwcześniejszych maszyn wykonujących proces sterowany czymś co można nazwać algorytmem jest krosno tkackie wynalezione w 1801 roku przez Josepha Jacquarda. Tkany wzór określały karty z otworami wydziurkowanymi w różnych miejscach.Te otwory, które wyczuwał specjalny mechanizm, sterowały wyborem nitek i innymi czynnościami maszyny. Trochę historii

6 Ineligentne systemy obliczeniowe6 Jedną z najważniejszych i najbardziej barwnych postaci w historii informatyki był Charles Babbage. Ten angielski matematyk, częściowo zbudowawszy w roku 1833 urządzenie zwane maszyną różnicową, służące do obliczania pewnych wzorów matematycznych, obmyślił i zrobił plany godnej uwagi maszyny zwanej maszyną analityczną maszyna różnicowa realizowała konkretne zadanie maszyna analityczna realizowała konkretny algorytm czyli program zakodowany w postaci otworów wydziurkowanych na kartach Maszyny Babbage były w swej naturze mechaniczne, oparte raczej na dzwigniach, trybach i przekładniach, a nie na elektronice i krzemie Koncepcje zawarte w projekcie maszyny analitycznej Babbagea tworzą podstawę wewnętrznej struktury i zasad działania dzisiejszych komputerów Maszyna Babbage

7 Ineligentne systemy obliczeniowe7 Algorytmika, komputery Połowa lat trzydziestych to niektóre z najbardziej fundamentalnych prac nad teorią algorytmów, uzmysławiających możliwości i ograniczenia algorytmów wykonywanych przez maszyny Kluczowe postacie to: Alan Turing (Anglik), Kurt Goedel (Niemiec), Andriej A. Markow (Rosjanin), Alonzo Church, Emil Post i Stephen Kleene (Amerykanie) Lata pięćdziesiąte i sześćdziesiąte to szybkie postępy w budowie komputerów: era badań jądrowych i kosmicznych, postępy w dziedzinie łączności wspieranej przez komputery (filtrowanie i analiza); gospodarka, bankowość, itd. Uznanie informatyki za niezależną dyscyplinę akademicką nastąpiło w połowie lat sześćdziesiątych

8 Ineligentne systemy obliczeniowe8 Metody Sztucznej Inteligencji (AI) zWprowadzenie do metod AI. xDefinicja xHistoria yKluczowe zagadnienia AI y Status AI jako gałęzi nauki y Nauczanie AI

9 Ineligentne systemy obliczeniowe9 Wprowadzenie do metod AI. Definicja Sztuczna inteligencja (Artificial Intelligence, AI) to dziedzina nauki zajmująca się rozwiązywaniem zagadnień efektywnie niealgorytmizowalnych w oparciu o modelowanie wiedzy. Jest to część ogólniejszej dziedziny, nazywanej Inteligencją Obliczeniową (Computational Intelligence), której celem jest rozwiązywanie zagadnień efektywnie niealgorytmizowalnych przy pomocy obliczeń.

10 Ineligentne systemy obliczeniowe10 Wprowadzenie do metod AI. Inne definicje: AI to nauka mająca za zadanie nauczyć maszyny zachowań podobnych do ludzkich. AI to nauka o tym, jak nauczyć maszyny robić rzeczy które obecnie ludzie robią lepiej. AI to nauka o komputerowych modelach wiedzy umożliwiających rozumienie, wnioskowanie i działanie. AI formalnie stanowi część informatyki. AI zaliczana jest do nauk kognitywnych. AI została rozpoznana jeszcze przed informatyką!

11 Ineligentne systemy obliczeniowe11 Historia Ramon Lull, XIII wiek, kataloński filozof i teolog, franciszkanin, "Ars magna generalis et ultimata" - systemu logicznego, obejmującego wszystkie gałęzie wiedzy. Gottfried Leibniz, Czterodziałaniową maszynę liczącą w 1694 r, projekt maszyny działającej w systemie dwójkowym. Pisząc o "rachunku filozoficznym" wyraża nadzieję, że w przyszłości dzięki rozwojowi logiki matematycznej zamiast się spierać, wystarczy policzyć - Calculemus! Problem Leibiza: jak większa liczba dzielona przez mniejszą może dać to samo co mniejsza przez większą? Czy dla symboli (-a)*(-b) = a*b ? "Umysł ludzki nie jest w stanie uchwycić powodów, dla których niewiadome i ich znaki zachowują się w taki sposób" (Clavius ?)

12 Ineligentne systemy obliczeniowe12 Historia Charles Babbage, , projekty maszyny różnicowej i maszyny analitycznej, "snującej myśli jak krosna Jacquarda snują włókna". John von Neumann, 1945, podaje ogólny schemat działania uniwersalnego komputera. 1949: Claude Shannon i teoria informacji; Norbert Wiener "Cybernetyka czyli sterowanie i komunikacja w zwierzęciu i maszynie", McCulloch i Pitts - sieć nerwowa jako układu elementów logicznych. Allan Turing, , ojciec informatyki teoretycznej, rozważa w 1950 roku możliwości myślenia maszyn, formułuje "test Turinga" w pracy "Computing Machinery and Intelligence".

13 Ineligentne systemy obliczeniowe13 Historia Marvin Minsky, 1956, nazwa "sztuczna inteligencja". Allen Newell, Herbert Simon, General Problem Solver, próba stworzenia ogólnego programu do rozwiązywania problemów. Newell i Simon, 1975, AI jako nauka empiryczna, symboliczne systemy oparte na wiedzy jako model umysłu.

14 Ineligentne systemy obliczeniowe14 Historia Inne źródła: logika, androidy i sterowanie, cybernetyka, rozwój informatyki, konferencja w 1956 roku na której sztuczna inteligencja otrzymała swoja nazwę. Allen Newell, wykłady Williama Jamesa na Harvard University, 1988: psychologia dojrzała już do zunifikowanych teorii poznania, czyli takich teorii, które postulują spójny system mechanizmów pozwalających wyjaśnić wszystkie aspekty działania umysłu.

15 Ineligentne systemy obliczeniowe15 Historia Według Patricka Winston'a w rozwoju AI wyróżnić można kilka okresów, które nazywa on następująco: 1.Era prehistoryczna: od maszyny analitycznej Charles'a Babbagea (1842) do około 1960 roku 2.Era romantyczna, , kiedy przewidywano, że AI osiągnie swoje cele w ciągu 10 lat. 3.Okres ciemności: , w którym niewiele się działo, opadł entuzjazm i pojawiły się głosy bardzo krytyczne. 4.Renesans: , gdy zaczęto budować pierwsze systemy doradcze, użyteczne w praktyce. 5.Okres partnerstwa: , gdy do badań nad AI wprowadzono metody kognitywistyczne. 6.Okres komercjalizacji: , gdy programy AI, a szczególnie systemy doradcze zaczęto sprzedawać komercyjnie. 7.Wielkie projekty: CYC, 5 generacja; projekty hybrydowe CI; era agentów, elementy AI w wielu programach.

16 Ineligentne systemy obliczeniowe16 Kluczowe zagadnienia AI Rozwiązywanie problemów: gry i zagadki logiczne, gry planszowe, obliczenia symboliczne. Główne metody to szukanie i redukcja problemów. Mistrzowskie rezultaty: warcaby, szachy i inne, ale np. go wymaga bardziej wyrafinowanych technik. Obliczenia symboliczne przy pomocy programów algebry komputerowej. Rozumowanie logiczne, dowodzenie twierdzeń. Manipulowanie obiektami z bazy zapisanych jako dyskretne struktury danych, duże problemy, wybór istotnych faktów i hipotez wymaga AI. Projektowanie układów logicznych. Język naturalny: rozumienie języka, tłumaczenie maszynowe, rozumienie mowy mówionej. Budowa baz danych z tekstów, wiedza kontekstowa, rola oczekiwań w interpretacji znaczeń.

17 Ineligentne systemy obliczeniowe17 Kluczowe zagadnienia AI Programowanie automatyczne lub autoprogramowanie. Opis algorytmów przy pomocy języka naturalnego, automatyczne pisanie programów, modyfikacja swojego własnego programu, programowanie dostępu do baz danych dla menedżerów Ekspertyza, systemy doradcze, inżynieria wiedzy. Reprezentacja wiedzy, dialog z systemem, wyjaśnianie rozumowania, akwizycja wiedzy często nieuświadomionej. System ekspertowy: wyjaśnia, wykonuje testy, zadaje pytania, proponuje rozwiązania, uzasadnia przyjęte rozwiązania, ocenia ich wiarygodność. Sporo systemów i "powłok" eksperckich. Wiedza eksperta dotyczy wąskiej dziedziny, zdrowy rozsądek - dużo trudniej.

18 Ineligentne systemy obliczeniowe18 Kluczowe zagadnienia AI Robotyka i wizja, rozpoznawanie obrazu, kształtów i cech przedmiotów. Programy manipulujące kończynami robotów, optymalizacja ruchów, planowanie sekwencji czynności, rozpoznawanie obrazu, kształtów, cech przedmiotów - integracja z metodami CI. Systemy i języki: to narzędzia dla pracy w AI i jednocześnie jej produkty uboczne. Języki programowania, idee time-sharing, przetwarzanie list, debugowanie są ubocznym wynikiem badań nad AI. LISP, Prolog, wiele języków specjalistycznych rozwinięto dla potrzeb AI.

19 Ineligentne systemy obliczeniowe19 Kluczowe zagadnienia AI Uczenie się - głównie w systemach inteligencji obliczeniowej, na razie słabo zintegrowane z AI. Uczenie się na przykładach, przez analogię, w klasycznych systemach AI prawie nie występuje. Uczenie maszynowe jest dość ezoterycznym, lecz bardzo ważnym działem AI Zagadnienia filozoficzne AI.

20 Ineligentne systemy obliczeniowe20 Kluczowe zagadnienia AI Filozofowie (J. Searl) sformułowali następujące rozróżnienie: Wersja słaba AI: komputer pozwala formułować i sprawdzać hipotezy dotyczące mózgu. W tej wersji AI nie ma wielu oponentów gdyż jest wiele dowodów na jej oczywistą przydatność. Możliwa jest komputerowa symulacja inteligentnego działania nie- biologicznymi metodami. Wersja silna AI: komputer odpowiednio zaprogramowany jest w istotny sposób równoważny mózgowi i może mieć stany poznawcze. Wersja często atakowana, spory filozoficzne, czy jest to możliwe. Symulacja inteligencji to nie prawdziwa inteligencja? Stąd następująca definicja: Sztuczna inteligencja to to, czego jeszcze nie potrafią zrobić sztuczne systemy.

21 Ineligentne systemy obliczeniowe21 Status AI jako gałęzi nauki Wg Encyklopedii PWN, sztuczna inteligencja jest to rozwiązywanie problemów sposobami wzorowanymi na naturalnych działaniach i procesach poznawczych człowieka za pomocą symulujących je programów komputerowych. R.I. Schalkoff definiuje szeroko sztuczną inteligencję jako dziedzinę badań, które usiłują wyjaśnić i naśladować zachowanie inteligentne w terminach procesów obliczeniowych. Widać tu interdyscyplinarną naturę AI: nie jest ona czystą nauką (część objaśniająca) ani tylko podstawą nowatorskiej, inżynierskiej dyscypliny (część emulacyjna). Oba punkty widzenia obejmuje stwierdzenie, iż celem AI jest zrozumienie inteligencji, aby możliwe było wykorzystanie jej do prowadzenia obliczeń.

22 Ineligentne systemy obliczeniowe22 Status AI jako gałęzi nauki Można znaleźć wiele definicji sztucznej inteligencji, jednakże wszystkie one mówią o tym, iż AI jest próbą modelowania aspektów ludzkiego rozumowania (myślenia) za pomocą komputerów, czy też próbą rozwiązywania za pomocą komputera takich problemów, które człowiek rozwiązuje szybciej. Termin Artificial Intelligence zaproponował J. McCarty w 1956 roku, na konferencji w Dartmouth.

23 Ineligentne systemy obliczeniowe23 Status AI jako gałęzi nauki

24 Ineligentne systemy obliczeniowe24 Status AI jako gałęzi nauki Lata 50-te naszego stulecia w rozwoju AI nazywane bywają średniowieczem lub – okresem sieci neuronowych. W 1943r. McCulloch i Pitts zaproponowali, by inteligencję tworzyć za pomocą architektury sieci neuronowych (NN).

25 Ineligentne systemy obliczeniowe25 Status AI jako gałęzi nauki W 1950 r. A. Turing ( ) zaproponował tzw. test Turinga, pozwalający stwierdzić, czy dany program jest inteligentny. Ideę tego testu pokazuje rys. 3. Norbert Wiener (1948) głosił teorię, wg której każde inteligentne zachowanie jest wynikiem mechanizmów sprzężenia zwrotnego (które mogą być symulowane na maszynach). System The Logic Theorist (1955r., Newell, Simon) przez wielu jest uznawany za pierwszy program AI.

26 Ineligentne systemy obliczeniowe26 Status AI jako gałęzi nauki

27 Ineligentne systemy obliczeniowe27 Gry i programy oparte na AI zPodsumowanie wczesnych projektów opartych na algorytmach szukania. zAlgorytmy szukania w grach. zSzukanie i ludzkie myślenie. zParadoksy kognitywne. zReprezentacja wiedzy...

28 Ineligentne systemy obliczeniowe28 Inne projekty J. Slagle, 1961, MIT - SAINT= Symbolic Automatic INTegrator, SAINT napisany w LISPie, całkowanie symboliczne. Rozwiązał 84 z 86 zadań z egzaminu na MIT. SIN, Symbolic Integration, 1967, J. Moses. SIN rozwiązywał najtrudniejsze całki. Powstała z tego MACSYMA a potem Mathematica.

29 Ineligentne systemy obliczeniowe29 Szachy – ogólnie Statyczna ocena sytuacji na planszy: liczba figur, wartość figur, położenie figur, możliwości ruchów. Funkcja oceny: suma w i F i, dobierz wsp. w i Zależność liczba ruch ó w - siła programu.liczba ruch ó w - siła Mistrz świata > 2800 punkt ó w. 5 ruch ó w punkt ó w poziom ó w p/poziom. 10 ruch ó w punkt ó w. Ok. 35 ruchów/poziom, strategie heurystyczne redukują to do 6/poz; dla 1000 ocen/sek, 150 sek/ruch, b=35, ok. 3-4 ruchy. Zależność jakość-szybkość obliczeń.jakość-szybkość obliczeń

30 Ineligentne systemy obliczeniowe30 Szachy cd. Szkocki międzynarodowy mistrz szachowy, nagroda dla programu, który ogra go chociaż raz na cztery partie - w 1985 roku przegrał wszystkie. 1958, pierwszy program szachowy, Alex Bernstein. 1985, HiTech wśród najlepszych 800 graczy, oceniał 10 mln pozycji Chess Genius na Pentium, kilka razy zwyciężył Gary Kasparova; czas grania ograniczony do 25 minut na zawodnika – Deep Blue przegrał z Kasparowem 2: – Deep Blue wygrał 3.5:2.5

31 Ineligentne systemy obliczeniowe31 Deep Thought i Deep Blue Deep Thought, od 1985 roku, 4 studentów (T. Hsu, T. Anantharaman, M. Campbell, A. Nowatzyk) z USA. Program Deep Blue (nowsze Deep Thought) + hardware do gry w szachy: 32 procesory IBM RS6000/SP ASIC milionów pozycji/sek! Duża biblioteka otwarć i końcówek. Deep Thought – szukanie alfa-beta, ok. 10 ruchów w skomplikowanych sytuacjach. Deep Blue - ok. 14 ruchów, 3000 punktów, pobił Kasparova. Reakcja prasy – potworna szybkość i pamięć zwyciężyły. Mózg: razy większa pamięć/szybkość.większa pamięć/szybkość

32 Ineligentne systemy obliczeniowe32 Status AI jako gałęzi nauki Hybrydowe systemy inteligentne to systemy, w których zastosowano połączone techniki logiki rozmytej (FL), obliczeń neuronowych (NN), algorytmów genetycznych (GA) i innych adekwatnych dla zadania metod, aby uzyskać wysoki maszynowy iloraz inteligencji. Są różne modele integrowania systemów inteligentnych: (1) Pełna integracja (full integration) – systemy dzielą struktury danych i reprezentację wiedzy. (2) Zwarte systemy (tight coupling) – niezależnie stosowane składniki (ES i NN) przekazują sobie informacje poprzez struktury danych w pamięci.

33 Ineligentne systemy obliczeniowe33 Status AI jako gałęzi nauki (3) Luźno połączone (loose coupling) – są zintegrowanymi systemami, aplikacja jest dekomponowana na dwa inteligentne systemy, które komunikują się ze sobą przez pliki danych (preprocessing, itp.). (4) Oddzielne systemy (stand alone) – systemy działają niezależnie, możliwość porównania efektywności metod, weryfikacja rozwiązań. Ten model wymaga nadmiarowości przetwarzania. (5) Przemieniające się (transformational) – też niezależne systemy, jednakże tu system zaczyna się jako jeden typ, a kończy jako drugi typ. Wiele przykładów systemów hybrydowych można znaleźć w literaturze.

34 Ineligentne systemy obliczeniowe34 Status AI jako gałęzi nauki Wieloagentowe systemy inteligentne składają się z pewnej liczby agentów. Agent jest to system komputerowy, umieszczony w pewnym środowisku, zdolny do autonomicznego działania w tym środowisku w celu osiągnięcia założeń projektowych. Autonomia agenta jest rozumiana jako zdolność do działania bez interwencji ludzi bądź innych systemów oraz do kontroli swojego stanu i zachowania. Inteligentny agent to taki, który w celu spełnienia założeń projektowych jest zdolny do elastycznego i autonomicznego działania (rys.5).

35 Ineligentne systemy obliczeniowe35 Status AI jako gałęzi nauki Elastyczność oznacza: (1) pro-aktywność – agenci podejmują inicjatywę by zrealizować cele, (2) zdolność reagowania – obserwacja środowiska i w porę odpowiadanie na zachodzące w nim zmiany (3) zdolność do interakcji – zdolność do współdziałania z innymi agentami (także ludźmi). Mianem agentów określa się zarówno obiekty fizyczne (np. fizycznie zrealizowane roboty) jak i komputerowe systemy

36 Ineligentne systemy obliczeniowe36 Status AI jako gałęzi nauki

37 Ineligentne systemy obliczeniowe37 Status AI jako gałęzi nauki Systemy wieloagentowe, to systemy, w których każdy agent ma w swoim otoczeniu nie tylko środowisko, ale i innych agentów, z którymi wchodzi w interakcje. Często mówi się o agentach zespołowych – są to sztuczni uczestnicy, którzy wykonują specjalistyczne funkcje w otoczeniu grupy. Przykładem systemu wieloagentowego jest system zarządzający sytuacjami wyjątkowymi środowiska. Sytuacja wyjątkowa wiąże się z negatywnymi zdarzeniami, mogącymi powodować straty w ludziach i sprzęcie. Stosowanie zaawansowanych systemów z wbudowanymi technikami AI ułatwiłoby efektywne i bezpieczne zarządzanie. Unia Europejska popiera prace nad aplikacjami stosującymi takie właśnie podejścia w kilku projektach.

38 Ineligentne systemy obliczeniowe38 Status AI jako gałęzi nauki Inteligentna symulacja ISS (Intelligent Simulation Systems): Systemy generujące realistyczne, symulowane światy mogą ułatwić i poszerzyć możliwości edukacji, mogą być dostępne wszędzie i w dowolnym czasie. W nowej generacji możliwości metod symulacji wspomogą konstrukcję programów, które będą modelować złożone sytuacje, włączając zarówno urządzenia, jak i znaczącą liczbę symulowanych inteligentnych osób. Użyteczność takich systemów to od zarządzania kryzysem do oceny produktów i rozrywki.

39 Ineligentne systemy obliczeniowe39 Status AI jako gałęzi nauki Inteligentne zasoby informacji IRSS (Information- Resource Specjalist Systems): IRSS powinien zapewniać efektywne wykorzystanie szerokich zasobów krajowej infrastruktury informacyjnej. System powinien się adoptować do zmian w potrzebach użytkownika i zmian w zasobach. Powinien komunikować się z użytkownikami w zrozumiały dla człowieka sposób. Wskazane byłoby, by specjalizowane systemy komunikowały się między sobą w celu znalezienia odpowiedniej informacji.

40 Ineligentne systemy obliczeniowe40 Status AI jako gałęzi nauki Inteligentny kreator projektów IPC (Intelligent Project Coaches): IPC powinien pracować przez długi czas jako członek zespołu. Taki kreator może wspomagać projektowanie złożonych urządzeń (np. samolotu) lub dużych programów komputerowych pomagając w zabezpieczaniu wiedzy o zadaniu oraz pozyskiwaniu informacji odnoszących się do problemu. Nie musi być systemem ekspertowym, powinien raczej pobudzać, wzmagać możliwości i produktywność współpracy z ekspertami.

41 Ineligentne systemy obliczeniowe41 Status AI jako gałęzi nauki Zespoły robotów RT (Robot Teams): Zespoły inteligentnych robotów mogą wykonywać zadania, które są niebezpieczne (np. usuwanie min, gaszenie pożaru, uwolnienie zakładników), jako pomoc domowa (otwieranie drzwi, proste prace pielęgnacyjne w starzejących się społeczeństwach), lub zwykłe prace, ale żmudne dla człowieka. Wymagania w stosunku do robotów realizujących takie cele daleko wyprzedzają obecne możliwości robotów przem y słowych.

42 Ineligentne systemy obliczeniowe42 Status AI jako gałęzi nauki Obszary badań naukowych ważne z punktu widzenia realizacji najważniejszego (rozumienie fundamentalnej natury inteligencji, ludzkiej i maszynowej), zadania AI to: (1) Uczenie, dostrajanie informacji i automatyczna adaptacja (2) Koordynacja percepcji, planowania i działania (3) Koordynacja i współpraca (4) Percepcja (5) Komunikacja człowiek-komputer na wiele sposobów (6) Pozyskiwanie interesującej informacji (7) Wnioskowanie i reprezentacja

43 Ineligentne systemy obliczeniowe43 LITERATURA 1.J. Chromiec, E. Strzemieczna, Sztuczna inteligencja. Podstawowe metody konstrukcji i analizy systemów eksperckich (Akademicka Oficyna Wydawnicza, Warszawa 1994) 2.E. Chwiałkowska, Sztuczna Inteligencja w Systemach Eksperckich (MIKOM 1991) 3.Z. Hippe, Zastosowanie metod sztucznej inteligencji w chemii (PWN, Warszawa 1993) 4.J. Mulawka, Sztuczna Inteligencja (1995) 5.Encyclopedia of Artificial Intelligence, ed. S. Shapiro (J. Wiley and Sons, 1987)

44 Ineligentne systemy obliczeniowe44 LITERATURA 6.Handbook of Artificial Intelligence, Vol. I-IV, red. A. Barr, E.A. Feigenbaum (HeurisTech Press, Stanford, CA, ). 7.AI in the 1980s and beyond, an MIT survey, eds. W. E. Grimson, R.S. Patil (MIT Press, Cambridge, MA 1987) 8.A. Newell, Unified Theories of Cognition (Harvard Univeristy Press 1990) 9.N.J. Nilsson, Principles of Artificial Intelligence (Tioga Pub. Co, Palo Alto, CA, 1980) 10. E. Rich, K. Knight, Artificial Intelligence (McGraw Hill, 1991) 11.P. Winston, Artificial Intelligence (3rd ed, Addison Wesley 1992)

45 Ineligentne systemy obliczeniowe45 LITERATURA MITCHELL T.M.: Machine Learning. The McGraw-Hill Companies, Inc., MULAWKA J.J.: Systemy ekspertowe. Wydawnictwa Naukowo-Techniczne, Warszawa, SCHALKOFF R.J.: AI: An Engineering Approach. McGraw- Hill Pub. Comp., SEARLE J.R.: Umysł, mózg i nauka. PWN, Warszawa, skrót w: Świat Nauki, Nr 1, WEISS G. (Ed.): Multiagent Systems. A Modern Approach to Distributed Artificial Intelligence. The MIT Press, 1999


Pobierz ppt "Ineligentne systemy obliczeniowe1 Sztuczna inteligencja Prof. Dr hab. Marek Rudnicki Katedra Systemów Ekspertowych i Sztucznej Inteligencji Dyżury dla."

Podobne prezentacje


Reklamy Google