Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Geometria obliczeniowa Wykład 13 Algorytmy randomizowane 1.Programowanie liniowe w R 2. 2.Lokalizacja punktu w siatce trapezów. 3.Znajdywanie średnicy.

Podobne prezentacje


Prezentacja na temat: "Geometria obliczeniowa Wykład 13 Algorytmy randomizowane 1.Programowanie liniowe w R 2. 2.Lokalizacja punktu w siatce trapezów. 3.Znajdywanie średnicy."— Zapis prezentacji:

1 Geometria obliczeniowa Wykład 13 Algorytmy randomizowane 1.Programowanie liniowe w R 2. 2.Lokalizacja punktu w siatce trapezów. 3.Znajdywanie średnicy zbioru punktów w R 3. 4.Minimalne koło opisane na zbiorze punktów.

2 Podstawowe metody stosowane w algorytmach randomizowanych. Metoda Las Vegas. Metoda ta zawsze daje poprawne rozwiązanie. Natomiast czas trwania algo- rytmu może być zmienny w zależności od układu danych. Przykładem takie- go algorytmu moze być np. Quickhull lub dowolny algorytmy przyrostowy z losowo uporządkowanymi danymi. Metoda Monte Carlo. Metoda ta zawsze kończy się w ustalonym czasie, ale może z pewnym praw- dopodobieństwem zwrócić zły wynik bądź zwraca wynik tylko z pewną do- kładnością. Przykładem takiego algorytmu może być np. szukanie ścieżki łą- czącej dwa punkty w labiryncie przy losowym wyborze kierunku poruszania się lub losowe próby lokalizacji punktu na płaszczyźnie podzielonej na obszary. Formalnie efektywność takiego algorytmu jest zmienną losową określoną na przestrzeni możliwych losowych ciągów danych. Wartość oczekiwana takiej zmiennej nazywana jest oczekiwanym czasem działania.

3 Przykład. Pole koła o promieniu 1 (wartość ). 4 21/27 = 3, /289 = 3,059

4 Programowanie liniowe w R 2. Problem. Dana jest liniowa funkcja celu c (postaci ax+by) oraz n warunków brzegowych (zbiór H nierówności liniowych a i x + b i y + c i 0, dla i = 1,2,..., n) opisujących obszar dopuszczalny D, w którym poszukujemy punktu maksymalizującego (minimalizującego) wartość funkcji c.

5 Algorytm if obszar wyznaczany przez półpłaszczyzny z H jest ograniczony w kierunku wzrostu wartości funkcji c i nie jest pusty then określ półpłaszczyzny h 1, h 2 ograni- czające wzrost wartości funkcji c, punkt przecięcia ich brzegów x:= (h 1 ) (h 2 ) i D:= h 1 h 2 else return(Brak rozwiązania); for h H-{h 1,h 2 } do if x h then D := D h; if D then x := {q: c(q) = max p (h) D c(p)} else return(Brak rozwiązania); return(x, c(x)); Funkcja celu: max 3x+2y Warunki brzegowe: y - 0,5x y y + 2x y + 0,5x y + x y + x

6 Twierdzenie Problem programowania liniowego w R 2 dla n warunków brzegowych można rozwiązać w czasie oczekiwanym O(n) z wykorzystaniem O(n) pamięci. Dowód. Niech v i będzie punktem, w którym funkcja c przyjmuje maksimum (minimum) w obszarze wyznaczanym przez i półpłaszczyzn, a h i i-tą półpłaszczyzną. Zdefiniujmy zmienną losową X i przyjmującą wartość 1, gdy v i-1 h i oraz 0 w przeciwnym przypadku. Ponieważ znalezienie nowego maksimum (rozwiązanie problemu jednowymia- rowego programowania liniowego), wymaga czasu O(n) (można to zrobić w czasie O(log n) - ale pociąga to za sobą zmiany w strukturze, których chcemy uniknąć), więc oczekiwany czas działania algorytmu wynosi E( n i=3 O(i)X i ) = n i=3 O(i)E(X i ). Wartość E(X i ) szacujemy stosując tzw. analizę powrotną. W tym celu badamy, jak zmienia się problem, gdy mając i warunków brzegowych, odejmiemy jedną z półpłaszczyzn. Punkt, w którym funkcja c ma maksimum (minimum) może ulec zmianie, gdy odejmiemy co najwyżej dwie spośród półpłaszczyzn wyzna- czających obszar (wyznaczają one wierzchołek, w którym przyjmowane jest maksimum (minimum) - jeśli przez ten punkt przechodzi więcej prostych będą- cych brzegami danych półpłaszczyzn, to może się zdażyć, że usunięcie dowol- nej półpłaszczyzny nie wpływa na wartość funkcji celu. Zatem E(X i ) 2/i-2. Stąd n i=3 O(i)E(X i ) = n i=3 O(1) = O(n).

7 Lokalizacja punktu w siatce trapezów. Problem Dany jest prostokątny obszar oraz n zawar- tych w nim odcinków (z których żaden nie jest pionowy i żadne dwa końce nie mają tej samej współrzędnej x-owej ani y-owej). Chcemy odpowiadać na pytanie: Miedzy którymi dwoma odcinkami (od góry i od dołu) znajduje się dany punkt ? Przedstawimy algorytm przyrostowy znaj- dujący podział obszaru na trapezy. Skonstruujemy strukturę danych umożliwia- jącą odpowiedź na zapytania o położenie punktów, wykorzystującą podział obszaru na trapezy.

8 Struktura jest grafem skierowanym, którego wierzchołki odpowiadają trapezom podziału, końcom odcinków i samym odcinkom. Wierzchołki odpowiadające odcinkom mogą występować wielokrotnie. Wierzchołki od- powiadające trapezom są liśćmi. Niech p i i q i oznaczają odpowiednio począ- tek i koniec i-tego odcinka s i. Gdy odcinek s i zawiera się w jednym z już istniejących trapezów, to w miejsce odpo- wiadającego mu wierzchołka wstawiamy wierzchołek p i, którego lewym synem jest wierzchołek odpowiadający trapezowi pow- stającemu po lewej stronie p i a prawym sy- nem jest q i. Prawym synem q i jest wierzcho- łek odpowiadający trapezowi powstającemu po prawej stronie q i a lewym synem jest s i. Lewy i prawy syn s i odpowiadają odpowied- nio trapezowi powyżej i poniżej odcinka s i. sksk smsm A DS(S i-1 ) A sisi E D C B qiqi sisi pipi B CD E

9 CBA Gdy odcinek s i przecina wiele istniejących już trapezów, to w miejsce wierzchołka odpowiadającego skrajnie lewemu trape- zowi wstawiamy p i, którego lewym synem jest wierzchołek odpowiadający trapezowi powstającemu po lewej stronie p i a pra- wym synem jest s i. W miejsce wierzchołka odpowiadającego skrajnie prawemu trapezowi wstawiamy q i, którego prawym synem jest wierzcho- łek odpowiadający trapezowi powstają- cemu po prawej stronie q i a lewym synem jest s i. Pozostałym trapezom odpowiadają wierz- chołki s i. Lewy i prawy syn dowolnego wierzchołka s i odpowiada odpowiednio trapezowi powstałemu powyżej i poniżej odcinka s i w miejscu poprzedniego trapezu. C AB sdsd scsc sbsb sasa DS(S i-1 ) I sisi H G F E D pipi qiqi sisi sisi sisi GD EFH I

10 Algorytm inicjalizuj strukturę DS ; for i:=1 to n do z pomocą struktury DS znajdź trapezy przecinane przez odcinek s i ; zastąp w strukturze DS przecinane tra- pezy nowymi układami wierzchołków; E D C B A J I H G F E D C B A J I H G F

11 Twierdzenie Algorytm oblicza sieć trapezów T(S) dla zbioru n odcinków S i tworzy strukturę danych DS(S) dla sieci T(S) w oczekiwanym czasie O(n log n). Oczekiwany rozmiar struktury wynosi O(n), a lokalizacja punktu wymaga oczekiwanego czasu O(log n). Dowód. Zmiana wierzchołka odpowiadającego trapezowi zwiększa długość ścieżki wyszukującej punkt o co najwyżej 3 wierzchołki. Jednak szacowanie długości ścieżki wyszukiwań w ten sposób jest zbyt grube. Rozważmy ścieżkę wyszukiwań punktu q w strukturze danych DS. Niech X i oznacza dla 1 i n liczbę wierzchołków na ścieżce wyszukiwań dodanych w i-tej iteracji. Zatem oczekiwana długość ścieżki wyszukiwań wynosi E( n i=1 X i ) = n i=1 E(X i ). Niech P i oznacza prawdopodobieństwo przejścia w trakcie lokalizacji punktu q przez wierzchołki stworzone w i-tej iteracji. Mamy E(X i ) 3P i. Ale P i =P[t q (S i ) t q (S i-1 )], gdzie t q (S i ) oznacza trapez w sieci powstałej po i-tej iteracji zawierający punkt q.

12 Aby oszacować prawdopodobieństwo P i zastosujemy analizę powrotną. W sieci powstałej po i-tej iteracji, zmianę trapezu zawierającego punkt q spowodować może usunięcie co najwyżej czterech krawędzi: - będącej górną krawędzią trapezu, - będącej dolną krawędzią trapezu, - wyznaczającej poprzez swój koniec lewą ścianę trapezu, - wyznaczającej poprzez swój koniec prawą ścianę trapezu. Jeśli koniec krawędzi będącej np. dolną krawędzią trapezu wyznacza równocześnie np. lewą ścianę trapezu, to liczba krawędzi, których usunięcie może wpłynąć na zmianę trapezu zawierającego punkt q, może być mniejsza niż 4. Zatem P i =P[t q (S i ) t q (S i-1 )] = P[t q (S i ) T(S i-1 )] 4/i. Stąd n i=1 E(X i ) n i=1 3P i n i=1 12/i = 12 n i=1 1/i = 12H n = O(log n). czyli oczekiwany czas lokalizacji punktu jest O(log n).

13 Zbadajmy oczekiwany rozmiar struktury. Wynosi on: (Liczba trapezów) + n i=1 (Liczba wierzchołków wewnętrznych stworzonych w i-tej iteracji). Liczba trapezów szacuje się przez O(n). Natomiast liczba wierzchołków dodanych w jednej iteracji może być liniowa względem liczby zbadanych odcinków. Prowadzi to do kwadratowego (pesy- mistycznego) oszacowania rozmiaru omawianej struktury danych. Niech k i oznacza liczbę trapezów tworzonych w i-tej iteracji. Zatem liczba nowych wierzchołków wewnętrznych wynosi k i -1. Niech (t,s) będzie równe 1, gdy trapez t T(S i ) nie będzie należeć do T(S i-1 ) po usunięciu odcinka s oraz 0 w przeciwnym przypadku. Mamy s S t [t T(S i )] (t,s) 4T(S i ) = O(i). Stąd E(k i ) = 1/i s S t [t T(S i )] (t,s) O(i)/i = O(1), czyli oczekiwana liczba nowych wierzchołków wewnętrznych powstałych w i-tej iteracji jest stała. Zatem oczekiwany rozmiar struktury danych wynosi O(n) + n i=1 E(k i -1) = O(n) + n i=1 E(k i ) = O(n) + n i=1 O(1) = O(n), czyli jest liniowy względem liczby odcinków.

14 Teraz możemy obliczyć oczekiwany czas pracy algorytmu, który wynosi: (Koszt inicjalizacji) + n i=1 (średni czas wyszukiwania położenia końców odcinka dodawanego w i-tej iteracji + liczba nowych wierzchołków dodawanych w i-tej iteracji) = O(1) + n i=1 (O(log i) + O(E(k i ))) = O(n log n), co kończy dowód.

15 I (S) D(S) Znajdywanie średnicy zbioru punktów w R 3. Definicja Dla danego zbioru n punktów S średnicą D(S) nazywamy odległość między dwo- ma najdalszymi punktami w S. Definicja Niech I (S) oznacza obszar będący częścią wspólną kul o promieniu i środkach w punktach należących do zbioru S. F(p) oznacza maksymalną odległość mię- dzy punktem p a jakimkolwiek innym punktem ze zbioru S. p F(p)

16 Fakt. Dla każdego punktu q I (S), gdy = F(p), zachodzi F(q) F(p) D(S). Natomiast dla q I (S), mamy F(p) F(q) D(S). Algorytm while S do wybierz losowo z S punkt p; oblicz F(p); znajdź I (S) dla = F(p); S := S – (S I (S) ); return( );

17 Lemat. Średnicę zbioru n punktów w R 3 można znaleźć w oczekiwanym czasie O(n log n). Dowód. W każdym kroku usuwamy co najmniej jeden punkt (wybrany). F(p) obliczamy w czasie liniowym. Znalezienie I (S) wymaga czasu O(n log n) (postępujemy identycznie jak w przypadku znajdywania przecięcia półprzestrzeni, co jest problemem dualnym do znajdywania otoczki wypukłej). Punkty z S należące do I (S) znajdujemy w czasie O(n log n). Ustawmy wartości F(p i ), gdzie p i S w ciąg niemalejący. Wtedy wybór punktu p, podobnie jak w quicksorcie, dzieli ciąg na dwie części - punkty, wśród których będziemy szukać rozwiązania i pozostałe. Zakładając, że punkty wybieramy z jednakowym prawdopodobieństwem, możemy obliczyć oczekiwany czas działania algorytmu : T(n) = O(n) + O(n log n) + n-1 i=0 T(i)/n, co daje T(n) = O(n log n).

18 Minimalne koło opisane na zbiorze punktów. Problem. Dla danego zbioru punktów na płaszczyźnie P znajdź minimalne koło zawierające wszystkie punkty z P. Weźmy losową permutację punktów z P. Niech P i := {p 1,..., p i } a D i będzie minimal- nym kołem zawierającym P i. Lemat. Dla 2 < i < n mamy: - jeśli p i D i-1, to D i = D i-1, - jeśli p i D i-1, to p i leży na brzegu D i.

19 Załóżmy, że dane są dwa punkty z P leżące na brzegu minimalnego koła. MinDisc2P(P, q 1, q 2 ) D 0 := najmniejsze koło z q 1, q 2 na brzegu; for k:=1 to n do if p k D k-1 then D k := D k-1 else D k := koło z q 1, q 2, p k na brzegu; return D n ;

20 Załóżmy teraz, że znamy jeden punkt z P leżący na brzegu minimalnego koła. MinDisc1P(P, q) Oblicz losową permutację p 1,..., p n punk- tów z P; D 1 := najmniejsze koło z p 1, q na brzegu; for j:=2 to n do if p j D j-1 then D j := D j-1 else D j := MinDisc2P({p 1,..., p j-1 }, p j, q); return D n ;

21 Ostatecznie nasz program wygląda nastę- pująco. MinDisc(P) Oblicz losową permutację p 1,..., p n punk- tów z P; D 2 := najmniejsze koło zawierające {p 1, p 2 }; for i:=3 to n do if p i D i-1 then D i := D i-1 else D i := MinDisc1P({p 1,..., p i-1 }, p i ); return D n ;

22 Lemat. Niech P będzie zbiorem punktów w R 2, a R, być może pustym, zbiorem punktów w R 2, dla których P R = oraz p P. Wtedy zachodzą następujące warunki: - Jeśli istnieje koło, które zawiera P i ma wszystkie punkty z R na swoim brzegu, to najmniejsze takie koło jest wyznaczone jednoznacznie (oznaczmy je przez md(P,R)). - Jeśli p md(P-{p},R), to md(P,R) = md(P-{p},R). - Jeśli p md(P-{p},R), to md(P,R) = md(P-{p},R {p}). Wniosek. MinDisc poprawnie oblicza minimalne koło zawierające zbiór punktów. Twierdzenie. Minimalne koło zawierające zbiór n punktów na płaszczyźnie można obliczyć w oczekiwanym czasie O(n), używając w pesymistycznym przypadku pamięć rozmiaru O(n).

23 Dowód. Oszacowanie rozmiaru pamięci wynika z faktu, że wszystkie trzy algorytmy MinDisc, MinDisc1P i MinDisc2P potrzebują O(n) pamięci. Czas działania MinDisc2P wynosi O(n). MinDisc1P działa w czasie liniowym dopóki nie zachodzi konieczność wywołania MinDisc2P. Prawdopodobieństwo takiego zdarzenia liczymy wykorzystując analizę wsteczną. Ustalmy zbiór {p 1,..., p i }. Niech D i będzie minimalnym kołem zawierającym {p 1,..., p i }, które ma q na swoim brzegu. Załóżmy, że usuwamy jeden z punktów z {p 1,..., p i }. Koło D i ulega zmianie, gdy usuwamy jeden z trzech (lub dwóch) punktów na brzegu (gdy punktów jest więcej, usunięcie niektórych z nich nic nie zmienia). Jednym z tych punktów jest q, więc usunięcie co najwyżej dwóch punktów powoduje zmniejszenie koła. Prawdopodobieństwo, że p i jest jednym z tych punktów wynosi 2/i. Zatem możemy oszacować oczekiwany czas działania MinDisc1P przez O(n) + n i=2 O(i) 2/i = O(n). Stosując identyczne rozumowanie dla MinDisc stwierdzamy, że oczekiwany czas działania tego algorytmu wynosi O(n).

24 Dziękuję za uwagę.

25 Ćwiczenia. 1. Który z poniższych algorytmów generuje losowe permutacje dla danej tablicy A długości n (tzn. każda możliwa permutacja A jest równie prawdopodobna jako wynik): a) (bez identyczności) for i:=1 to n do zamień(A[i],A[RANDOM(i+1,n)]); b) for i:=1 to n do zamień(A[i],A[RANDOM(1,n)]); c) for i:=n downto 2 do zamień(A[i],A[RANDOM(1,i)]); 2. Załóżmy, że mamy dostępny ograniczony generator liczb losowych, który generuje tylko losowy bit (0 lub 1). Jak możemy generować losową permu- tację stosując ograniczony generator liczb losowych ? Jaki jest czas działania procedury ? 3. Prosty wielokąt nazywamy gwiaździstym, gdy zawiera punkt q widoczny z każdego punktu wielokąta. Podaj algorytm, którego oczekiwany czas działania jest liniowy i sprawdza, czy dany prosty wielokąt jest gwiaździsty.

26 4. Podaj przykład układu odcinków generującego w pesymistycznym przypadku strukturę podziału na trapezy rozmiaru O(n 2 ). 5. Udowodnij, że liczba wewnętrznych węzłów w strukturze przeszukiwań D algorytmu tworzenia mapy trapezowej wzrasta o k i -1 w iteracji i, gdzie k i jest liczbą nowych trapezów w T(S i ) (a stąd nowych liści w D). 6. Udowodnij, że mapa trapezowa n odcinków w położeniu ogólnym ma co najwyżej 3n+1 trapezów. 7. Niech P będzie zbiorem punktów w R 2, a R, być może pustym, zbiorem punktów w R 2, dla których P R = oraz p P. Wtedy zachodzą następujące warunki: - Jeśli istnieje koło, które zawiera P i ma wszystkie punkty z R na swoim brzegu, to najmniejsze takie koło jest wyznaczone jednoznacznie (oznaczmy je przez md(P,R)). - Jeśli p md(P-{p},R), to md(P,R) = md(P-{p},R). - Jeśli p md(P-{p},R), to md(P,R) = md(P-{p},R {p}).


Pobierz ppt "Geometria obliczeniowa Wykład 13 Algorytmy randomizowane 1.Programowanie liniowe w R 2. 2.Lokalizacja punktu w siatce trapezów. 3.Znajdywanie średnicy."

Podobne prezentacje


Reklamy Google