Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałRoksana Konopski Został zmieniony 10 lat temu
1
Najważniejsze twierdzenia i zastosowania w geometrii
Geometria - podobnie jak arytmetyka należy do najstarszych nauk. Podobnie jak inne działy matematyki geometria wyewoluowała od badania kształtów znanych z codziennego życia do studiów nad nieskończenie wymiarowymi abstrakcyjnymi przestrzeniami matematycznymi.
2
Geometria euklidesowa
Klasyczna odmiana geometrii opisana po raz pierwszy przez Euklidesa w dziele Elementy (z III w. p.n.e.). Zebrał on całą ówczesną wiedzę matematyczną znaną Grekom, dziś jego dzieło przedstawia się jako pierwszą znaną aksjomatyzację w historii matematyki. Pierwotnie uprawiano ją jedynie na płaszczyźnie i w przestrzeni trójwymiarowej wiążąc ją jednocześnie ze światem fizycznym, który miała opisywać, nie dopuszczając tym samym możliwości badania innych odmian geometrii.
3
Twierdzenie Ponceleta-Steinera
Mówi, że jeśli dana konstrukcja jest wykonalna za pomocą cyrkla i linijki, to jest ona wykonalna za pomocą samej linijki, o ile dany jest na płaszczyźnie pewien okrąg wraz ze środkiem. Jest to najsilniejszy rezultat tego typu, przy pomocy samej linijki nie da się wyciągać pierwiastków kwadratowych.
4
Twierdzenie Mohra-Mascheroniego
Mówi, że jeżeli dana konstrukcja geometryczna jest wykonalna za pomocą cyrkla i linijki, to jest wykonalna za pomocą samego cyrkla, pod warunkiem, że ograniczymy się do wyznaczania punktów konstrukcji, a pominiemy rysowanie linii. Wynik ten został opublikowany w roku 1672 przez Georga Mohra, był jednak nieznany aż do roku Niezależnie od Mohra twierdzenie zostało odkryte przez Lorenzo Mascheroniego w roku 1797.
5
Twierdzenie Talesa Jeżeli ramiona kąta przecięte są prostymi równoległymi, to odcinki wyznaczone przez te proste na jednym ramieniu kąta, są proporcjonalne do odpowiednich odcinków na drugim ramieniu kąta.
6
Twierdzenie Pitagorasa
W dowolnym trójkącie prostokątnym suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej tego trójkąta. Zgodnie z oznaczeniami na rysunku obok zachodzi tożsamość
7
Twierdzenie Steinera-Lehmusa
Twierdzenie Lehmusa-Steinera jest twierdzeniem planimetrii sformułowanym przez C. L. Lehmusa i udowodnionym przez Jakoba Steinera. Jeżeli w trójkącie długości dwóch dwusiecznych są równe, to trójkąt jest równoramienny.
8
Twierdzenie Sin ,Cos ,Tg ,Ctg
9
Twierdzenie Erdősa X+Y+Z≥2(a+b+c)
Dowód Mordella nie był elementarny - pierwszy elementarny dowód podano dopiero w roku Od tego czasu pojawiło się kilka elementarnych dowodów, a sama nierówność została uogólniona.
10
Twierdzenie o dwusiecznej kąta wewnętrznego w trójkącie
Dwusieczna kąta wewnętrznego w trójkącie dzieli przeciwległy bok proporcjonalnie do długości pozostałych boków. |AD| \ |DB| = |AC| \ |BC|
11
Twierdzenie tangensów
12
Twierdzenie Stewarta
13
Dziękuje za uwagę Piotr Peplau Id
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.