Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałAmadei Barylski Został zmieniony 11 lat temu
2
Dane informacyjne szkoły zapraszającej w projekcie MGP
Nazwa szkoły: Gimnazjum im. Noblistów Polskich w Koźminku ID grupy: 98/44_mf_g2 Opiekun: p. Edyta Trocha Kompetencja: Matematyczno - fizyczna Temat projektowy: Liczba pi Semestr/rok szkolny: Semestr IV, rok szkolny 2011/2012
3
Gimnazjum z Koźminka 1.Katarzyna Janiak 2.Kinga Humelt
3.Karolina Trzcińska 4.Ewelina Murawska 5.Kamil Krakus 6.Adrian Wesołowski 7.Kamil Kapłonek 8.Tobiasz Kawecki 9.Szymon Wojciechowski 10.Józef Muszyński 11.Klaudia Antczak 12.Aleksandra Pietura 13.Kinga Jędrzejak 14.Piotr Kostera 15.Tomasz Jaśkiewicz
4
Dane informacyjne szkoły zapraszanej w projekcie MGP
Nazwa szkoły: Gimnazjum im. Królowej Jadwigi we Wschowie ID grupy: 98/87_MF_G1 Opiekun: p. Teresa Czapiewska - Jędrzychowska Kompetencja: Matematyczno - fizyczna Temat projektowy: W świecie liczb Semestr/rok szkolny: Semestr III, rok szkolny 2010/2011
5
Gimnazjum ze Wschowy 1.Agnieszka Gąsiorek.
2. Nicole Kamińska 3. Michał Kroma 4. Wojciech Mały 5. Agnieszka Marciniak 6. Martyna Mielnik 7. Natalia Młynarczak 8. Aleksandra Rybka 9.Oktawia Suda 10. Katarzyna Walner 11. Jarosław Urbanowicz
6
Liczba π… „Następnie sporządził odlew okrągłego morza o średnicy dziesięciu łokci, o wysokości 5 łokci i o obwodzie 30 łokci.” Biblia Tysiąclecia π≈3,
7
Historia liczby π… Już w czasach zamierzchłych starożytni rachmistrze zauważyli, że wszystkie koła mają ze sobą coś wspólnego, że ich średnica i obwód pozostają wobec siebie w takim samym stosunku, a liczba ta bliska jest 3. W Starym Testamencie obwód był właśnie trzykrotnością średnicy, a w jednym z najstarszych tekstów matematycznych- papirusie Rhinda (XVII w. p. n. e.) wartość ta była przedstawiana jako (169)2≈3,
8
Film o liczbie Pi… Liczbę Pi poznajemy jako pierwszą w szkole – jako iloraz obwodu koła i jego średnicy. „Pi” to również tytuł i inspiracja niekomercyjnego filmu Darrena Aronofskiego. Bohater filmu Max Cohen jest stereotypowym naukowcem. Zamknięty w sobie, poświęcający każdą wolną chwilę matematyce, zaniedbujący doczesną egzystencję, prowadzi niekończącą się walkę z migrenowymi halucynacjami oraz ... liczbami. Jego obsesją jest odnalezienie reguły w chaosie dziesiętnego rozwinięcia liczby Pi.
9
Ciekawostki… W piramidzie Cheopsa stosunek sumy dwóch boków podstawy do wysokości wynosi 3,1416, czyli przybliżenie pi z dokładnością do czterech miejsc po przecinku! Dziś nie można stwierdzić czy był to zadziwiający przypadek, czy wynik geniuszu nieznanych nam z imienia uczonych. Liczba zestawiona z początkowych 38 cyfr rozwinięcia dziesiętnego liczby Pi, jest pierwsza. Tak i mnie i tobie poznawana tu liczba cudna dla ogół przynosi wszystkim pożytek wspaniały π ≈ 3, Uczeni szukając kontaktu z cywilizacjami pozaziemskimi, wysłali w kosmos drogą radiową informację o wartości liczby π.
10
Wzory na Pi… Oto wzory na liczbę pi : Babilończycy: π≈3
Egipcjanie (ok r. p.n.e.):π≈(169)2 ≈3, Archimedes:π≈227≈3,14 Chiński matematyk Chang Hing :14245≈3, Klaudiusz Ptolomeusz π≈ ≈3,1416 hinduski matematyk Ariabhata (V w. n.e.): π≈ =3,1416
11
Czym jest liczba Pi… Liczba π to stosunek długości okręgu do długości jego średnicy, jest wielkością stałą i wynosi w przybliżeniu 3, Ale dlaczego w przybliżeniu? Liczba PI" jest liczbą niewymierną Symbol ten pochodzi od greckich słów: periferia lub perimetron.
12
Dziś jesteśmy w stanie obliczyć wartość pi do milionów miejsc po przecinku. Rodzi się pytanie: jakiego rodzaju to liczba? Wiemy, że jest bardzo bliska 227≈3,14 , ale nie ma tu równości. Bliższa jest wartości ≈3, , ale nawet ta liczba nie określa dokładnej wartości.
13
liczba Pi… Ostatecznie w roku 1882 niemiecki matematyk Ferdinand Lindemann rozstrzygnął podstawowy problem dotyczący liczby i wykazał, że π jest liczbą przestępną czyli taką, która nie jest pierwiastkiem żadnego wielomianu o współczynnikach całkowitych. Liczba pi jest więc liczbą niewymierną, taką której rozwinięcie dziesiętne zachowuje się "byle jak",nie ma w nim żadnego porządku i nigdy się nie kończy.
14
Używany dzisiaj symbol π wprowadzony został dopiero w 1706 roku przez Wiliama Jonesa, a spopularyzował go Leonhard Euler używając tego zapisu w dziele Analiza. Swą nazwę zawdzięcza pierwszej literze greckiego słowa "peryferia". Liczba ta nazywana jest również ludolfiną od imienia niemieckiego matematyka Ludolpha van Ceulena, który wraz z żoną na początku XVII w. podał jej przybliżenie z dokładnością 35 miejsc po przecinku.
15
„PI w arytmetyce” Pi można wykorzystać również w arytmetyce. Jeśli liczbę parzystą podzielimy przez nieparzystą, a później tę samą parzystą przez kolejną nieparzystą, po czym następną parzystą przez tę samą nieparzystą co poprzednio (czyli 2/1, 2/3, 4/3, 4/5, 6/5, 6/7 itd. ) to po wymnożeniu ich wyników otrzymujemy połowę Pi - Wielu ludzi pasjonuje się Pi, bo sądzą że można związać z nią zdarzenia losowe.
16
Międzynarodowy dzień „PI”
14 marca obchodzony jest międzynarodowy dzień liczby Pi. Datę święta wyznaczono ze względu na pierwsze cyfry rozszerzenia dziesiętnego PI (3,14)…
17
Wiersz o „PI” Liczba Pi [Fragment Wiersza Wisławy Szymborskiej] Podziwu godna liczba Pi trzy koma jeden cztery jeden. Wszystkie jej dalsze cyfry też są początkowe, pięć dziewięć dwa ponieważ nigdy się nie kończy. Nie pozwala się objąć sześć pięć trzy pięć spojrzeniem osiem dziewięć obliczeniem siedem dziewięć wyobraźnią, a nawet trzy dwa trzy osiem żartem, czyli porównaniem…
18
1 rok świetlny równa się w przybliżeniu π·107·c (km), gdzie c oznacza prędkość światła (w kilometrach na sekundę). Liczba sekund w roku wynosi 365·24·60·60= , co w przybliżeniu wynosi π·107·c.
19
Obliczanie liczby π metodą Monte-Carlo
Metoda Monte-Carlo - jest stosowana do modelowania matematycznego procesów zbyt złożonych , istotną rolę w metodzie MC odgrywa losowanie (wybór przypadkowy) wielkości charakteryzujących proces, przy czym losowanie dokonywane jest zgodnie z rozkładem, który musi być znany. Metodą Monte Carlo można obliczyć pole figury zdefiniowanej nierównością: Czyli koła o promieniu R i środku w punkcie (0,0).
20
Losuje się n punktów z opisanego na tym kole kwadratu - dla koła o R = 1 współrzędne wierzchołków (-1,-1), (-1,1), (1,1), (1,-1). 2. Po wylosowaniu każdego z tych punktów trzeba sprawdzić, czy jego współrzędne spełniają powyższą nierówność (tj. czy punkt należy do koła). Wynikiem losowania jest informacja, że z n wszystkich prób k było trafionych, zatem pole koła wynosi : Gdzie P jest polem kwadratu opisanego na kole.
21
W statystyce matematycznej igła Buffona jest jednym z najpopularniejszych problemów prawdopodobieństwa geometrycznego. Problem został sformułowany w przez Georges'a-Louisa Leclerca, hrabiego Buffon, a w podał on jego rozwiązanie. Opisany w problemie eksperyment jest statystyczną symulacją pozwalającą oszacować liczbę π. Otrzymana metoda estymacji liczby π należy do klasy metod Monte Carlo.
22
Zadanie Buffona o igle Francuski hrabia Buffon, znany przyrodnik, rysował równo linie na papierze, potem rzucał igłę i sprawdzał ile razy przecina ona narysowane linie. Okazało się, że w stosunku liczby przecięć do liczby rzutów też jest zakodowane Pi…
23
Metoda aproksymacji liczby
Aproksymacja to proces określania rozwiązań przybliżonych na podstawie rozwiązań znanych, które są bliskie rozwiązaniom dokładnym. Jeśli nieznany jest obwód koła, to w przybliżeniu można go ustalić, obliczając obwód wielokąta wpisanego w okręg i obwód wielokąta opisanego na tym samym okręgu. Obwód koła, równy r, jest zawsze dłuższy niż obwód wielokąta wpisanego, a krótszy niż obwód wielokąta opisanego na tym okręgu
24
Pierwszym matematykiem, który tę metodę z powodzeniem praktykował, był Archimedes. Do swoich obliczeń wykorzystał on wielokąt o 96 bokach i uzyskał w ten sposób przybliżenie sięgające dwóch miejsc po przecinku – = 3,14. Liu Hui Jeszcze dokładniejszy wynik osiągnął chiński matematyk Liu Hui w III w. n.e. Z prawdziwie chińską cierpliwością rozpoczął on od wpisywania w okrąg wielokąta o 192 bokach, aż doszedł do wpisywania wielokąta o 3072 bokach i otrzymał wartość liczby = 3,14159.
25
Wzory z zastosowaniem liczby
Długość łuku: Pole wycinka kołowego: Długość okręgu: l = 2r r = promień Pole koła: P = r2
26
Wzory z zastosowaniem liczby
Objętość kuli: r = promień Pole elipsy: a = ½ długości osi wielkiej b = ½ długości osi małej Pole powierzchni kuli: Obwód elipsy: a = ½ długości osi wielkiej b = ½ długości osi małej
27
Długość okręgu – przykład
Policzmy długość okręgu dla r = 3 r
28
Pole koła – przykład Liczymy pole koła dla r = 3 r
29
Pole wycinka kołowego – przykład
Liczymy pole wycinka kołowego dla r = 3 i α = 90o r
30
Objętość kuli – przykład
Liczymy objętość kuli dla r = 3 r
31
Pole powierzchni kuli – przykład
Liczymy pole kuli dla r = 3 r
32
Pole elipsy – przykład b a Dla a = 6,25 i b = 4
33
Wykorzystanie liczby Pi Walec
Walec ma dwie podstawy, które są kołami. Powierzchnia boczna walca „po rozwinięciu” jest prostokątem
34
Wysokością walca jest każdy odcinek o końcach należących do obu podstaw i równoległy do odcinka łączącego środki podstaw.
35
Stożki Oto stożek i jego siatka.
36
Objętość stożka wynosi V= 1/3 Sh S - pole powierzchni podstawy stożka H - wysokość stożka
37
Kule Kulą nazywamy bryłę powstałą z obrotu półkola dokoła prostej zawierającej jego średnicę.
38
P = 4πr2 - pole powierzchni kuli
gdzie: πr2 - pole koła wielkiego Pkw (największego przekroju kuli) r - promień kuli i koła wielkiego Możesz zapamiętać, że powierzchnia kuli jest równa powierzchni czterech kół wielkich: P = 4Pkw = 4πr2 V = 4/3πr3 - objętość kuli
39
Rozwiązywaliśmy zadania: Zadanie 1
Do garnka o średnicy 24 cm i wysokości 12 cm wody. Oblicz, ile litrów wody nalano do garnka. r = 12cm h = 12 cm V = ∏ r ² * h V = 144 ∏ cm ³ V ~ 452,16cm ³ 452,16 cm ³ ~ 4,5 l Do garna nalano około 4,5 litra wody.
40
Zadanie 2 Zakończenie wieży jest stożkiem o promieniu podstawy r = 3,5 m i tworzącej l = 6m. Ile metrów kwadratowych należy kupić na pokrycie zakończenia wieży, jeżeli na skrawki i spojenia trzeba doliczyć 10%? Pc = Pp + Pb Pp = π r ² Pb = π * r * l Pp = 12,25 ∏ ~ 38,45 cm ² Pb = 21 ∏ ~ 65,95 Pc = 38, , 95 Pc ~ 104, % pc ~ 114,84 m ² Na pokrycie zakończenia wieży należy kupić około 114,84m ².
41
Zadanie 3 Mama upiekła dwa ciasta: tort w kształcie walca o średnicy 30 cm i wysokości 6 cm oraz babkę w kształcie półkuli o promieniu 12 cm . Z obu ciast wykroiła kawałki równe ich 1/12. Czy otrzymane w ten sposób porcje ciasta mają równe objętości? Tort: Babka: V = π r ² * h V= 4/3 π r ³ V = 225 π ~ 706,5 cm ³ V= 4/ π V~ 4239 cm ³ V~ 4/3 5425,92 cm ³ 1/12 = 353,25 cm ³ V~ 7234,56 cm ³ / 2 V ~ 3617,28 cm ³ 1/12 = 301,44 cm ³ Otrzymane porcje ciasta nie mają równych objętości.
42
Zadanie 4 Namiot indiański (wigwam) ma kształt stożka o średnicy podstawy 8 m i wysokości o 25% krótszej od promienia. Ile metrów sześciennych powietrza znajduje się w namiocie (wynik zaokrąglij do 0,1 m ³) ? V = 1/3Pp * h Pp = π r ² Pp = 16 π Pp = 50,24 m ² V = 16,7 * 3 V = 50,1 m ³ W namiocie znajduje się 50,1 m ³ powietrza.
43
Zadanie 5 Ile kul o promieniu 5 cm można pomalować 3 litrami farby, jeśli wiadomo, że 1 litr tej farby wystarcza na pomalowanie 9m ² powierzchni? Pc= 4 π r ² r= 5cm= 0,05 m r2=0,25m Pc= 4*0,25*3,14 Pc=3,14m2 Pc kuli to 3,14m2 27 / 3,14= 8,599 Trzema litrami farby można pomalować 8 kul.
45
Dokonywaliśmy również pomiarów brył przestrzennych i obliczaliśmy ich pola powierzchni i objętości.
47
Wykonujemy doświadczenie zmierzającego do empirycznego wyznaczenia przybliżonej wartości Pi. Mierzymy średnice płyty kompaktowej, talerza i obudowę od wentylatora.
51
Algorytmy Dzięki programowi „Eli” stworzyliśmy algorytm, który obliczał pole i obwód koła.
54
Bibliografia http://pl.wikipedia.org/wiki/Pi
55
Pozdrawiamy !!!!!!
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.