Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Systemy telekomunikacji optycznej

Podobne prezentacje


Prezentacja na temat: "Systemy telekomunikacji optycznej"— Zapis prezentacji:

1 Systemy telekomunikacji optycznej
dr inż. Małgorzata Jędrzejewska-Szczerska Katedra Optoelektroniki i Systemów Elektronicznych Politechnika Gdańska

2 Schemat blokowy systemu transmisji cyfrowej
Interferencja międzysymbolowa (ISI) Elementowa stopa błędu (BER) Kodowanie

3 Wpływ szumu na detekcję sygnału
Szum cieplny Szum śrutowy Inne źródła błędów - Szum modowy - Szum wzmacniacza - Szum laserowa - Szum prądowy - Szum tła

4 Stosunek sygnału do szumu
ρ – czułość detektora, P – moc optyczna docierająca do detektora, e –ładunek elektryczny, B – szerokość pasma odbiornika, k – stała Boltzmanna, T – temperatura [K], R – rezystancja obciążenia szum śrutowy szum termiczny

5 Stosunek sygnału do szumu
Fotodioda lawinowa Mn-2 – współczynnik szumu nadmiarowego, M – współczynnik powielania, n – od 2 do 3

6 Stopa błędu Stopa błędu to względna ilość błędów detekcji (BER)
Jeżeli: BER = 0,01 to prawdopodobieństwo błędu 0,01 czyli na każde 100 podjętych w układzie detekcji decyzji 1 jest błędna Liczba błędów w ciągu sekundy wynosi średnio: V·BER V - szybkości transmisji [b/s]

7 Stopa błędu przy ograniczeniu szumem śrutowym
Szum śrutowy związany jest z sygnałem i pojawia się tylko wówczas gdy pojawia się sygnał (nadanie „1” ). Prawdopodobieństwo popełnienia błędu oznacza odbiór zerowej ilości elektronów pomimo tego, że w czasie T wysłano średnio Ne elektronów.

8 Stopa błędu przy ograniczeniu szumem termicznym
W systemach, w których stosunek sygnału do szumu jest uwarunkowany termicznie podejmowanie decyzji w odbiorniku polega na porównaniu odebranego sygnału z poziomem odniesienia erf – funkcja błędu

9 Funkcja błędu erf źródło:

10 Zależność stopy błędu od stosunku sygnału do szumu
szum śrutowy szum termiczny BER = S/N = 20 (13 dB) S/N = 144 (21,6 dB)

11 Kodowanie sygnału w systemach cyfrowych
telekomunikacja systemy komputerowe możliwość odtworzenia częstotliwości zegarowej i zapewnienia synchronizacji nawet wtedy gdy występuje przerwa w transmisji sygnału możliwość przenoszenia bez zniekształcenia kodu przez odbiornik możliwość wprowadzenia redundancji ułatwiającej korekcję błędu

12 Kodowanie sygnału w systemach cyfrowych
Zasada Pasmo 90% mocy Zegar T T Sygnał NRZ 0,86/T RZ 1,72/T

13

14

15 Scrambling – kodowanie nadmiarowe

16 Kodowanie sygnału w systemach analogowych
systemy dystrybucji kanałów telewizyjnych (CTV) systemy zagęszczające siatkę łączności komórkowej (mikrocele) sygnał użyteczny składa się z pewnej liczby kanałów skupionych wokół częstotliwości nośnych i zawierających dowolną modulację CTV – modulacja AM wizji i FM fonii

17 Kodowanie sygnału w systemach analogowych
Modulacja amplitudowa pojedynczym sygnałem sinusoidalnym: ωm – częstotliwość sygnału modulującego, m – głębokość modulacji, ωsc – częstotliwość fali nośnej Modulacja intesywności promieniowania świetlnego (IM): P0 – średnia moc transmitowanego światła

18 Projektowanie światłowodowego systemu transmisyjnego
odległość transmisji możliwość rozwoju systemu rodzaj transmitowanego sygnału - sygnał analogowy: rodzaj modulacji zajmowane pasmo stosunek sygnału do szumu - sygnał cyfrowy: szybkość transmisji stopa błędu czułość odbiornika

19 Projektowanie światłowodowego systemu transmisyjnego
Wybór: źródła światłowodu detektora Transmisja sygnału w systemie jest ograniczona przez: dyspersję tłumienie

20 Projektowanie światłowodowego systemu transmisyjnego
Minimalizacja kosztów Stopa błędu Stosunek sygnału do szumu

21 Projektowanie światłowodowego systemu transmisyjnego
zdefiniowanie wymagań eksploatacyjnych systemu (parametry transmisyjne, mechaniczne, fizyczne) bilans mocy sygnału optyczne określenia pasma transmisji (większe pasmo pozwali na przejście z transmisji analogowej na cyfrową)

22 Bilans mocy optycznej analiza mocy optycznej wykonana dla każdego łącza L – długość światłowodu, asw – tłumienie światłowodu, N – liczba spawów, as – tłumienie spawów, M – liczba połączeń rozłączalnych, azł – tłumienie połączeń rozłączalnych, am – tłumienie związane ze starzeniem źródeł światła

23 Bilans mocy optycznej margines 10% całkowitej tłumienności linii na możliwe uszkodzenia kabla i połączenia zgrzewane dodatkowo am związane ze starzeniem źródeł światła: am = -3.0 dB – LD z elementem Peltier am = -4.0 dB – LD bez termostatu am = -4.5 dB – LED

24 Bilans mocy optycznej Jeżeli bilans mocy optycznej wykazuje, że transmisja nie jest możliwa: źródło o większej mocy światłowód o niższym tłumieniu fotodetektor o większej czułości regenerator

25 Bilans mocy optycznej Pźr – moc źródła, Pdet – czułość detektora, PL – całkowite straty mocy w linii, M – margines: od 6 do 10 dB Jako jednostek mocy optycznej używa się dBm 10 mW = 10 dBm 1 mW = 0 dBm 0.1 mW = -10 dBm

26 Bilans szerokości pasma przenoszenia
B – pasmo transmisji, Dt – całkowite rozszerzenie impulsu w linii transmisyjnej Dtśw – rozszerzenie impulsu w światłowodzie, Dtdet – rozszerzenie impulsu w detektorze, Dtźr – rozszerzenie impulsu w źródle

27 Bilans szerokości pasma przenoszenia
Jeżeli bilans szerokości pasma przenoszenia wykazuje, że transmisja nie jest możliwa należy rozważyć użycie: światłowodu o większej wartości f3dB światłowodu jednomodowym źródła o węższej charakterystyce widmowej światłowodu o mniejszej dyspersji światłowodu kompensujący dyspersję

28 Przykład I - Bilans mocy
Tor światłowodowy o długości 15 km składa się z 10 odcinków łączonych co 1 km o tłumieniu 1 dB/km łączonych co 1 km i 5 odcinków łączonych co 1 km o tłumieniu 1,5 dB/km. Jaka powinna być minimalna moc na wejściu światłowodu, aby po stronie odbiorczej uzyskać średnią moc P0=0,3 mW zakładając, że na każdym spawie traci się 15% mocy.

29 Przykład I - Bilans mocy (ROZWIĄZANIE)
Tłumienie 10 odcinków po 1 dB/km ∙ 1,0 dB = 10 dB Tłumienie 5 odcinków po 1,5 dB/km ∙ 1,5 dB = 7,5 dB Tłumienie 1 spawu przy spadku transmisji o 15%: T=(100-15)% = 85%, as = 10 log 0,85= 0,7 dB Tłumienie 14 spawów (przy 15 odcinkach) ∙ 0,7dB = 9,8 dB Łączne tłumienie ,3 dB Moc na wejściu: Jeżeli a = 27,3 dB to PN\PO = 573,03 PN = PO∙ a = 0,3 ∙ 537,03 = 0,161 PN = 0,161 mW

30 Przykład II – Obliczenie dyspersji światłowodu
Obliczyć poszerzenie impulsu (dyspersję) w różnego typu światłowodach o długości 10 km, współczynniku refrakcji rdzenia n = 1,48 i aperturze numerycznej NA = 0,1. Dyspersja materiałowa światłowodów wynosi D(l)=40 ps/km∙nm, a szerokość widma źródła Dl = 30nm

31 Przykład II – Obliczenie dyspersji światłowodu (ROZWIĄZANIE)
a) światłowód wielomodowy skokowy b) światłowód wielomodowy gradientowy c) światłowód jednomodowy

32 Przykład III – projektowanie analogowego światłowodowego systemu transmisyjnego
System typu punkt-punkt o długości 500 m do transmisji szerokopasmowego sygnału wideo (6MHz). Dla otrzymania dobrej jakości obrazu wymagany jest aby stosunek sygnału do szumu wynosił 50 dB (S/N =105). Modulacja m=100% LED: P=1 mW, l0=0,85 mm, Dl=35 nm, t=12 ns, powierzchnia emisyjna ma średnicę a<50 mm Światłowód wielomodowy o profilu skokowym: NA=0,24, f3dBL= 33MHz, a=5dB/km, 2r=50 mm Fotodioda p-i-n: Cd= 5 pF, r = 0,5 A/W, f3dB=6 MHz RL = (2p Cdf3dB)-1 = [2p (5∙10-12) (6∙10)]-1 = 5035 [W] RL= 5100 W

33 Przykład III – projektowanie analogowego światłowodowego systemu transmisyjnego
Założenie: praca w temperaturze otoczenia T=300K, współczynnik szumów dla przedwzmacniacza F=2, równoważna temperatura szumów: Te= 600 K P = 6 mW, I = rP = 3 mA

34 Przykład III – projektowanie analogowego światłowodowego systemu transmisyjnego
Bilans mocy: źródło: 1 mW dBm odbiornik: 6 mW ,2 dBm Sprzężenie źródła ze światłowodem h=NA2 = 0, ,4 dB Straty odbiciowe (2) ,4 dB Straty 2 złączy dB 22,2-12,4-0,4-2=7,4 [dB] 7,4/5 = 1,48 [km] Jeżeli: L=1000m to M=2,4 dB

35 Przykład III – projektowanie analogowego światłowodowego systemu transmisyjnego
Bilans szerokości pasma przenoszenia:

36 Przykład IV – projektowanie analogowego światłowodowego systemu transmisyjnego
System na odległość 100 km, B=400Mbit/s, BER = 10-9, kod NRZ Całkowity czas narastania impulsu po przejściu przez łącze nie może być większe niż 70% czasu trwania impulsu tn=0,7T=0,7/RNRZ lub tn=0,7(T/2)=0,7/RNRZ tn=0,7/(4∙10)8=1,75 [ns]

37 DE-CIX - daily

38 DE-CIX - yearly

39 PLIX - daily

40 PLIX - yearly

41 Terabit Ethernet NTT, 69.1Tbps, 240km, , (OFC), DWDM, 240km, 432x171Gbps(OTN) QAM: 2xQPSK A1:A2=2:1 nm, D=25GHz, 6,4b/s/Hz Alcatel-Lucent, Bell, 15,5Tbps, 7000km, 155x100Gbps; 100Pb/s/km

42 Eksperymenty ponad 10Tb/s


Pobierz ppt "Systemy telekomunikacji optycznej"

Podobne prezentacje


Reklamy Google