Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

PRACOWNIA FIZYKOCHEMICZNYCH PODSTAW TECHNOLOGII CHEMICZNEJ

Podobne prezentacje


Prezentacja na temat: "PRACOWNIA FIZYKOCHEMICZNYCH PODSTAW TECHNOLOGII CHEMICZNEJ"— Zapis prezentacji:

1 PRACOWNIA FIZYKOCHEMICZNYCH PODSTAW TECHNOLOGII CHEMICZNEJ
WPŁYW PODSTAWNIKÓW ELEKTRONOAKCEPTOROWYCH W PIERŚCIENIU PIRYDYNY NA AKTYWNOŚĆ UKŁADU KATALITYCZNEGO PdCl2/Fe/I2/X-Py W REAKCJI KARBONYLOWANIA NITROBENZENU C φ PRACOWNIA FIZYKOCHEMICZNYCH PODSTAW TECHNOLOGII CHEMICZNEJ Dorota Szukała Kierownik i opiekun pracy: dr Monika Karpińska WSTĘP Reakcje karbonylowania, czyli reakcje przyłączania tlenku węgla do związków organicznych, są jedną z najbardziej selektywnych, katalitycznych metod służących do wbudowywania tlenu w cząsteczki związków organicznych. Od wielu lat bardzo duże zainteresowanie budzą reakcje katalitycznego karbonylowania nitrozwiązków i amin. Reakcje te umożliwiaja m.in.. syntezowanie izocyjanianów stosowanych do produkcji poliuretanów metodą bezfosgenową. Otrzymując izocyjaniany bezpośrednio w reakcji karbonylowania nitrozwiazków czy amin lub też w wyniku termicznego rozkładu karbaminianów (możliwych do otrzymania w łagodniejszych warunkach) eliminujemy wady takie jak: toksyczne i korozyjne działanie fosgenu oraz jego bardzo kosztowny proces produkcji, a także powstawanie dużych ilości odpadowego HCl. Opracowany przez Pracownię Fizykochemicznych Podstaw Technologii Chemicznej Wydziału Chemii UW układ katalityczny PdCl2/Fe/I2/Py dla reakcji karbonylowania nitrobenzenu do fenylokarbaminianu etylu wykazuje jedną z najwyższych aktywności i selektywności. CEL PRACY -synteza kompleksów (ClnPy)2PdCl2; n=1,2 z wykorzystaniem: 2-Chloropirydyny, 3-Chloropirydyny, 3,5-Dichloropirydyny oraz określenie ich struktury - modyfikacja układu katalitycznego (PdCl2/Fe/I2/Py) poprzez zastąpienie Py odpowiednią chloropirydyną -zbadanie wpływu elektronoakceptorowych właściwości chloru jako podstawnika w reakcji: karbonylowania nitrobenzenu karbonylownia aniliny w obecności nitrobenzenu karbonylowania aniliny w obecności tlenu redukcji nitrobenzenu w obecności wody. Synteza kompleksów (ClnPy)2PdCl2 , n = 1,2 W kolbie trójszyjnej umieszczono ACN (10 ml), PdCl2 (1,128 mmola) oraz PyCl n ; n=1-2 (2,256 mmola); kolbę zaopatrzono w mieszadło magnetyczne; reakcję prowadzono w temperaturze pokojowej, przez 24 godz. Po tym czasie produkt odsączono, osad wysuszono na powietrzu i krystalizowano z acetonu. ArNO2 + 3CO ROH ArNHC(O)OR CO2 Tabela 2 Wyniki reakcji karbonylowania nitrobenzenu wobec PdCl2/Fe/I2/PyCln;n=0-2. L.p. Katalizator PdCl2 [g] Podstawiona pirydyna [mmol] Konwersja nitrobenzenu [%] Wydajność [%] Anilina FKE a-metylo chinolina 1 pirydyna 54 9 44 <1 2 2-Chloropirydyna 26 8 18 3 3-Chloropirydyna 43 34 4 3,5-Dichloropirydyna 38 7 32 Struktura kompleksu I (PdCl2 / 2-Chloropirydyna) Warunki reakcji: PdCl2/Fe/I2/PyCln = 0,056/2,68/0,12/6,2 mmol; n=0-2; NB = 81 mmol; etanol = 20 ml; T = 180 C; P(CO) = 4MPa; czas = 120 min Tabela 3 Wyniki reakcji karbonylowania nitrobenzenu tlenkiem węgla w obecności syntezowanych kompleksów. Tabela 1 Wyniki reakcji karbonylowania aniliny mieszaniną CO/O2. L.p. Kompleks porównawczy (ClnPy)2PdCl2 n=0-2 [g] Podstawiona pirydyna [mmol] Konwersja nitrobenzenu [%] Wydajność[%] Anilina FKE α-metylo chinolina 1 PdCl/Py pirydyna 54 8 44 <1 2 2Kompleks I 2-Chloropirydyna 28 6 23 >1 3 Kompleks II 3,5-Dichloropirydyna 35 7 34 4 Kompleks III 3-Chloropirydyna 32 L.p. Kompleks porównawczy (ClnPy)2PdCl2 n=0-2 [g] Podstawiona pirydyna PyX [mmol] Konwersja AN FKE MCH 1 PdCl/Py pirydyna 25 16 >1 2 Kompleks I 2-Chloropirydyna 30 21 3 Kompleks II 3,5-Dichloropirydyna 34 18 4 Kompleks III 3-Chloropirydyna 27 17 WNIOSKI: 1. Reakcja utleniającego karbonylowania aniliny mieszaniną CO/O2: Gdy jako katalizator zastosowano kompleks (ClnPy)2PdCl2 (gdzie n=0-2) (tabela 1) obserwowano nieznaczny wpływ podstawników w pierścieniu pirydyny. Konwersja aniliny wzrasta w szeregu: pirydyna>3-chloropirydyna >2-chloropirydyna >3,5-dichloropirydyna. 2. Reakcja redukcyjnego karbonylowania nitrobenzenu tlenkiem węgla: Gdy jako katalizator zastosowano mieszaninę PdCl2 z różnymi pirydynami PyCln (gdzie n=0-2) (tabela 2) największy wpływ na wydajność produktu obserwujemy w przypadku gdy zastosowano 2-chloropirydyny. Konwersja nitrobenzenu maleje w szeregu: pirydyna>3-chloropirydyna >3,5-dichloropirydyna >2-chloropirydyna. Gdy jako katalizator zastosowano kompleks (ClnPy)2PdCl2 (tabela 3) największą wydajność produktu uzyskano także gdy zastosowano pirydynę, zaś dla 2-chloropirydyny najmniejszą. Pozostałe podstawione pirydyny wykazują podobny wpływ na przebieg reakcji jak w reakcji redukcyjnego karbonylowania NB. Warunki reakcji: (XPy)2PdCl2/Fe/I2/PyX = 0,056/2,68/0,12/6,2 mmol; NB = 81 mmol; etanol = 20 ml; T = 180 C; P(CO) = 4MPa; czas = 120 min Warunki reakcji: (ClnPy)2PdCl2/Fe/I2/PyCln = 0,056/2,68/0,12/6,2 mmol; n=0-2 AN = 54 mmol; etanol = 20 ml; T = 180 C; p(O2) = 0.4 MPa; p(CO) = 36 MPa; czas = 60 min


Pobierz ppt "PRACOWNIA FIZYKOCHEMICZNYCH PODSTAW TECHNOLOGII CHEMICZNEJ"

Podobne prezentacje


Reklamy Google