Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

III. WARTOŚĆ A CZAS.

Podobne prezentacje


Prezentacja na temat: "III. WARTOŚĆ A CZAS."— Zapis prezentacji:

1 III. WARTOŚĆ A CZAS

2 Kiedy ten, kto pożycza innym, dostaje za to wynagrodzenie, siła nabywcza (wartość) pożyczonej komuś sumy zmienia się w miarę upływu czasu, niczym pod wpływem inflacji.

3 Co to jest STOPA PROCENTOWA?
Na okres (rok) pożyczasz komuś złotowkę. Po upływie okresu (ro-ku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł Pomyśl o stosunku wynagrodzenia za pożyczenie komuś złotowki do wysokości pożyczonej kwoty. 0,1 zł/1 zł = 0,1 = 10%. STOPA PROCENTOWA JEST TO STOSUNEK WYNA- GRODZENIA ZA UDZIELENIE POŻYCZKI DO WY- SOKOŚCI TEJ POŻYCZKI. ZAUWAŻ: WYNAGRODZENIE WYPŁACANE JEST PO UPŁYWIE OKRESU, KTÓREGO DOTYCZY POŻYCZKA!

4 NOMINALNA A REALNA STOPA PROCENTOWA
Na okres (np. rok) pożyczasz komuś złotowkę. Po upływie tego okresu (roku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł, więc 0,1 zł/1 zł = 0,1 = 10%. Ta stopa procentowa zasłuje na miano NOMINALNEJ (in), ponie-waż obliczając ją nie uwzględniliśmy zmian wartości pieniądza spowodowanych inflacją.

5 Nie zawsze obliczenie stopy procentowej jest trywialnie łatwe…
ZADANIE Oto pożyczka A: pożyczasz 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok?

6 Nie zawsze obliczenie stopy procentowej jest trywialnie łatwe…
Oto pożyczka A: pożyczasz 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł.

7 Nie zawsze obliczenie stopy procentowej jest trywialnie łatwe…
Oto pożyczka A: pożyczasz 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł. b) Ile zwracasz po roku?

8 Nie zawsze obliczenie stopy procentowej jest trywialnie łatwe…
Oto pożyczka A: pożyczasz 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł. b) Ile zwracasz po roku? 4 zł.

9 Nie zawsze obliczenie stopy procentowej jest trywialnie łatwe…
Oto pożyczka A: pożyczasz 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł. b) Ile zwracasz po roku? 4 zł. c) Opisz pożyczkę B, której udzielenie (i zaciągniecie) jest równie opłacalne jak udzielenie (i zaciągnięcie) pożyczki A; od pożyczki A niech różni się ona tylko tym, że wynagrodzenie jest wypłacane w momencie jej zwrotu, a nie w momencie jej udzielenia.

10 Nie zawsze obliczenie stopy procentowej jest trywialnie łatwe…
Oto pożyczka A: pożyczasz 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł. b) Ile zwracasz po roku? 4 zł. c) Opisz pożyczkę B, której udzielenie (i zaciągniecie) jest równie opłacalne jak udzielenie (i zaciągnięcie) pożyczki A; od pożyczki A niech różni się ona tylko tym, że wynagrodzenie jest wypłacane w momencie jej zwrotu, a nie w momencie jej udzielenia. Pożyczam 3 zł na rok w zamian za wynagrodzenie 1 zł płatne w momencie zwrotu pożyczki.

11 Nie zawsze obliczenie stopy procentowej jest trywialnie łatwe…
Oto pożyczka A: pożyczasz 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł. b) Ile zwracasz po roku? 4 zł. c) Opisz pożyczkę B, której udzielenie (i zaciągniecie) jest równie opłacalne jak udzielenie (i zaciągnięcie) pożyczki A; od pożyczki A niech różni się ona tylko tym, że wynagrodzenie jest wypłacane w momencie jej zwrotu, a nie w momencie jej udzielenia. Pożyczam 3 zł na rok w zamian za wynagrodzenie 1 zł płatne w momencie zwrotu pożyczki. d) Ile wynosi stopa procentowa w przypadku pożyczki A? Odpowiedź uzasadnij.

12 Nie zawsze obliczenie stopy procentowej jest trywialnie łatwe…
Oto pożyczka A: pożyczasz 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł. b) Ile zwracasz po roku? 4 zł. c) Opisz pożyczkę B, której udzielenie (i zaciągniecie) jest równie opłacalne jak udzielenie (i zaciągnięcie) pożyczki A; od pożyczki A niech różni się ona tylko tym, że wynagrodzenie jest wypłacane w momencie jej zwrotu, a nie w momencie jej udzielenia. Pożyczam 3 zł na rok w zamian za wynagrodzenie 1 zł płatne w momencie zwrotu pożyczki. d) Ile wynosi stopa procentowa w przypadku pożyczki A? Odpowiedź uzasadnij. 1 zł/3 zł = 33,(3)%. Wszak właśnie tyle wynosi stopa procentowa w przypadku pożyczki B (pożyczka A jest tożsama z pożyczką B; w obu przypadkach kwota udostępniana pożyczkobiorcy i wynagrodzenie dla pożyczkodawcy są takie same).

13 Na okres (np. rok) pożyczasz komuś złotowkę
Na okres (np. rok) pożyczasz komuś złotowkę. Po upływie tego okresu (roku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł, więc 0,1 zł/1 zł = 0,1 = 10%. A teraz obliczymy REALNĄ stopę procentową (ir). Powiedzmy, że w okresie, na który opiewała pożyczka, ceny wzrosły o π=5%... Ile w takiej sytuacji wyniosło wynagrodzenie pożyczkodawcy?

14 Na okres (np. rok) pożyczasz komuś złotowkę
Na okres (np. rok) pożyczasz komuś złotowkę. Po upływie tego okresu (roku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł, więc 0,1 zł/1 zł = 0,1 = 10%. A teraz obliczymy REALNĄ stopę procentową (ir). Powiedzmy, że w okresie, na który opiewała pożyczka, ceny wzrosły o π=5%... Ile w takiej sytuacji wyniosło wynagrodzenie pożyczkodawcy? UPROSZCZONY WARIANT ODPOWIEDZI: Wynagrodzenie pożyczkodawcy wyniosło 0,05 zł. Żeby w momencie zwrotu pożyczonej złotówki i wypłaty wyna-grodzenia przeciętny pożyczkodawca mógł kupić to, co mógł sobie kupić za złotówkę w momencie udzielania pożyczki, musi wydać nie 1,0 zł, lecz 1,05 zł. Ponieważ jest mu zwracane łącznie 1,1 zł, jego wynagrodzenie wynosi (1,1-1,05) zł = 0,05 zł.

15 0,05•[1/(1+5%)] zł 0,05/(1+5%) zł. 0,0476 zł/1,0zł ≈4,76%.
Na okres (np. rok) pożyczasz komuś złotowkę. Po upływie tego okresu (roku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł, więc 0,1 zł/1 zł = 0,1 = 10%. A teraz obliczymy REALNĄ stopę procentową (ir). Powiedzmy, że w okresie, na który opiewała pożyczka, ceny wzrosły o π=5%... Ile w takiej sytuacji wyniosło wynagrodzenie pożyczkodawcy? DOKŁADNY WARIANT ODPOWIEDZI: Realna wartość wynagrodzenia pożyczkodawcy równego nomi-nalnie 0,05 zł wynosi : 0,05•[1/(1+5%)] zł 0,05/(1+5%) zł. (Wyrażam ją w złotych o sile nabywczej równej sile nabywczej pożyczanej złotówki). A zatem realne wynagrodzenie za udzielenie pożyczki wynosi ≈0,0476 zł. W efekcie szukana stopa procentowa wynosi: 0,0476 zł/1,0zł ≈4,76%.

16 W praktyce i tak najczęściej:
ir = in – π.

17 ZADANIE Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb. W tym samym roku wskaźnik cen konsumenta (ang. consumer price index) równa się 115. a) Ile w tej sytuacji wynosi nominalna stopa procentowa?

18 Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb
Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb. W tym samym roku wskaźnik cen konsumenta (ang. consumer price index) równa się 115. a) Ile w tej sytuacji wynosi nominalna stopa procentowa? Nominalna stopa procentowa wynosi 600/4000 = 0,15 = 15%.

19 Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb
Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb. W tym samym roku wskaźnik cen konsumenta (ang. consumer price index) równa się 115. a) Ile w tej sytuacji wynosi nominalna stopa procentowa? Nominalna stopa procentowa wynosi 600/4000 = 0,15 = 15%. b) O czym informuje nominalna stopa procentowa?

20 Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb
Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb. W tym samym roku wskaźnik cen konsumenta (ang. consumer price index) równa się 115. a) Ile w tej sytuacji wynosi nominalna stopa procentowa? Nominalna stopa procentowa wynosi 600/4000 = 0,15 = 15%. b) O czym informuje nominalna stopa procentowa? Nominalna stopa procentowa informuje, o ile zmienia się wartość nominalna lokaty po jednym roku na skutek doliczenia do niej nominalnych odsetek. W tym konkretnym przypadku nominalna wartość lokaty bankowej wzrosła o 15%.

21 Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb
Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb. W tym samym roku wskaźnik cen konsumenta (ang. consumer price index) równa się 115. a) Ile w tej sytuacji wynosi nominalna stopa procentowa? Nominalna stopa procentowa wynosi 600/4000 = 0,15 = 15%. b) O czym informuje nominalna stopa procentowa? Nominalna stopa procentowa informuje, o ile zmienia się wartość nominalna lokaty po jednym roku na skutek doliczenia do niej nominalnych odsetek. W tym konkretnym przypadku nominalna wartość lokaty bankowej wzrosła o 15%. c) Ile w tej sytuacji wynosi realna stopa procentowa (zastosuj uproszczony wzór)?

22 Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb
Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb. W tym samym roku wskaźnik cen konsumenta (ang. consumer price index) równa się 115. a) Ile w tej sytuacji wynosi nominalna stopa procentowa? Nominalna stopa procentowa wynosi 600/4000 = 0,15 = 15%. b) O czym informuje nominalna stopa procentowa? Nominalna stopa procentowa informuje, o ile zmienia się wartość nominalna lokaty po jednym roku na skutek doliczenia do niej nominalnych odsetek. W tym konkretnym przypadku nominalna wartość lokaty bankowej wzrosła o 15%. c) Ile w tej sytuacji wynosi realna stopa procentowa (zastosuj uproszczony wzór)? Realna stopa procentowa wynosi 15% - 15% = 0%.

23 Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb
Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb. W tym samym roku wskaźnik cen konsumenta (ang. consumer price index) równa się 115. a) Ile w tej sytuacji wynosi nominalna stopa procentowa? Nominalna stopa procentowa wynosi 600/4000 = 0,15 = 15%. b) O czym informuje nominalna stopa procentowa? Nominalna stopa procentowa informuje, o ile zmienia się wartość nominalna lokaty po jednym roku na skutek doliczenia do niej nominalnych odsetek. W tym konkretnym przypadku nominalna wartość lokaty bankowej wzrosła o 15%. c) Ile w tej sytuacji wynosi realna stopa procentowa (zastosuj uproszczony wzór)? Realna stopa procentowa wynosi 15% - 15% = 0%. d) O czym informuje realna stopa procentowa?

24 Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb
Banki płacą 600 gb odsetek od rocznej lokaty równej 4000 gb. W tym samym roku wskaźnik cen konsumenta (ang. consumer price index) równa się 115. a) Ile w tej sytuacji wynosi nominalna stopa procentowa? Nominalna stopa procentowa wynosi 600/4000 = 0,15 = 15%. b) O czym informuje nominalna stopa procentowa? Nominalna stopa procentowa informuje, o ile zmienia się wartość nominalna lokaty po jednym roku na skutek doliczenia do niej nominalnych odsetek. W tym konkretnym przypadku nominalna wartość lokaty bankowej wzrosła o 15%. c) Ile w tej sytuacji wynosi realna stopa procentowa (zastosuj uproszczony wzór)? Realna stopa procentowa wynosi 15% - 15% = 0%. d) O czym informuje realna stopa procentowa? Realna stopa procentowa informuje, o ile zmienia się wartość realna (siła nabywcza) lokaty po jednym roku na skutek doliczenia do niej nominalnych odsetek i inflacji (chodzi o łączny wpływ tych obu zdarzeń). W tym konkretnym przypadku realna wartość lokaty bankowej się nie zmieniła.

25 FUTURE VALUE, CZYLI DO JAKIEJ WARTOŚCI UROŚNIE POŻYCZONA DZIŚ NA PROCENT KWOTA PIENIĄDZA?

26 1 zł+1 zł•i = 1 •(1+ i)1 zł Tyle pieniędzy zwróci wierzycielowi dłużnik, który na rok pożyczył 1 zł.

27 [1•(1+ i) zł+i•1•(1+i)]zł = [1•(1+i)•(1+i)]zł = 1•(1+i)2] zł.
1 zł+1 zł•i = 1 •(1+ i)1 zł Tyle pieniędzy zwróci wierzycielowi dłużnik, który na rok pożyczył 1 zł. Po drugim roku wierzycielowi należy się tyle, ile należało mu się po 1. roku plus odsetki od tej kwoty za drugi rok: [1•(1+ i) zł+i•1•(1+i)]zł = [1•(1+i)•(1+i)]zł = 1•(1+i)2] zł.

28 [1•(1+ i) zł+i•1•(1+i)]zł = [1•(1+i)•(1+i)]zł = 1•(1+i)2] zł.
1 zł+1 zł•i = 1 •(1+ i)1 zł Tyle pieniędzy zwróci wierzycielowi dłużnik, który na rok pożyczył 1 zł. Po drugim roku wierzycielowi należy się tyle, ile należało mu się po 1. roku plus odsetki od tej kwoty za drugi rok: [1•(1+ i) zł+i•1•(1+i)]zł = [1•(1+i)•(1+i)]zł = 1•(1+i)2] zł. Zauważmy, że po 2. roku wierzyciel dostaje nie tylko oprocentowanie pożyczonego 1 zł, lecz także oprocentowanie odsetek, których nie zażądał po upływie pierwszego roku. Są zatem naliczane odsetki od odsetek. Nic dziwnego, że taki sposób liczenia nazywa się PROCENTEM SKŁADANYM.

29 [1•(1+ i)2 +i•1•(1+i)2]zł = [1•(1+i)2•(1+i)]zł = 1•(1+i)3] zł.
Po trzecim roku wierzycielowi należy się tyle, ile należało mu się po 2. roku plus odsetki od tej kwoty za trzeci rok: [1•(1+ i)2 +i•1•(1+i)2]zł = [1•(1+i)2•(1+i)]zł = 1•(1+i)3] zł.

30 [1•(1+ i)2 +i•1•(1+i)2]zł = [1•(1+i)2•(1+i)]zł = 1•(1+i)3] zł.
Po trzecim roku wierzycielowi należy się tyle, ile należało mu się po 2. roku plus odsetki od tej kwoty za trzeci rok: [1•(1+ i)2 +i•1•(1+i)2]zł = [1•(1+i)2•(1+i)]zł = 1•(1+i)3] zł. I tak dalej. Rozumowanie to możemy uogólnić, mówiąc, że po n latach wartość pożyczonego 1 zł zwiększa się do 1•(1+i)n zł. Natomiast wartość A zł rośnie do An = A•(1+i)n zł. Np. jeśli stopa procentowa wynosi 10%, po 3 latach dzisiejsza kwota 1000zł urośnie do 1000•(1+i)3zł = 1000•1,331zł = 1331zł.

31 Popatrzmy, z jak wielką siłą działa procent składany!
Lata Stopa procentowa 4% 7% 10% 1 2 3 4 5 10 20 50 100 1,0 1,1 1,2 1,5 2,2 7,1 50,5 1,3 1,4 2,0 3,9 29,5 867,7 1,6 2,6 6,7 117,4 13 780,6 Lata Nie należy lekceważyć małych różnic poziomu stopy procentowej! NAWET MAŁE RÓŻNICE OPROCENTOWANIA PO WIELU ORESACH KAPITALIZACYJNYCH SKUTKUJĄ OGROMNY-MI RÓŻNICAMI PRZYSZŁYCH WARTOŚCI DZISIEJSZEJ KWOTY PIENIĄDZA.

32

33 Czy jest możliwa operacja odwrotna? Nic prost-szego!
A zatem w gospodarce, w której cena pożyczek, czyli stopa pro-centowa wynosi i, mając dziś kwotę A, za n lat możemy się stać właścicielami kwoty An=A•(1+i)n (An to po angielsku future va-lue).Wystarczy ulokować pieniądze w banku lub kupić pa-piery wartościowe. Czy jest możliwa operacja odwrotna? Nic prost-szego!

34 Jeśli jesteśmy pewni, że za n lat nasz dochód wyniesie An zł, możemy zaciągnąć pożyczkę w wysokości:
A = An•[1/(1+i)n] zł.

35 A•(1+i)nzł=[An•[1/(1+i)n]•(1+i)n]zł=An zł.
Jeśli jesteśmy pewni, że za n lat nasz dochód wyniesie An zł, możemy zaciągnąć pożyczkę w wysokości: A = An•[1/(1+i)n] zł. Przy stopie procentowej i kwota, którą za n lat musimy zwrócić, wyniesie: A•(1+i)nzł=[An•[1/(1+i)n]•(1+i)n]zł=An zł.

36 A•(1+i)nzł=[An•[1/(1+i)n]•(1+i)n]zł=An zł.
Jeśli jesteśmy pewni, że za n lat nasz dochód wyniesie An zł, możemy zaciągnąć pożyczkę w wysokości: A = An•[1/(1+i)n] zł. Przy stopie procentowej i kwota, którą za n lat musimy zwrócić, wyniesie: A•(1+i)nzł=[An•[1/(1+i)n]•(1+i)n]zł=An zł. Tyle przecież będziemy mieli! W TEN SPOSÓB ZA-MIENIAMY PIENIĄDZE, JAKIE NA PEWNO DOSTANIEMY ZA N LAT, NA GOTÓWKĘ, KTÓRĄ MOŻEMY PŁACIC JUŻ DZISIAJ.

37 A = An•[1/(1+i)n] zł. Kwotę A z naszego przykładu ekonomiści nazywają war-tością zaktualizowaną (ang. present value) kwoty An. Za-uważmy, że wartość zaktualizowana danej kwoty z przy-szłości zmienia się odwrotnie niż stopa procentowa.

38 A = An•[1/(1+i)n] zł. Kwotę A z naszego przykładu ekonomiści nazywają war-tością zaktualizowaną (ang. present value) kwoty An. Za-uważmy, że wartość zaktualizowana danej kwoty z przy-szłości zmienia się odwrotnie niż stopa procentowa. WARTOŚĆ ZAKTUALIZOWANA PRZYSZŁEJ KWO- TY TO SUMA, KTÓRA PRZY DANEJ STOPIE PRO- CENTOWEJ – DZIĘKI DZIAŁANIU PROCENTU SKŁADANEGO – ZMIENI SIĘ W TĘ PRZYSZŁĄ KWOTĘ.

39 An = A•(1+i)n zł (ang. future value).
A = An•[1/(1+i)n] zł (ang. present value).

40 ZADANIE Po pierwszym roku eksploatacja pewnej maszyny (po odliczeniu wszystkich kosztów!) da czysty zysk równy Po drugim roku zysk wyniesie 1210, a po trzecim – Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. Cena maszyny wynosi Czy warto ją kupić?

41 czas • • • • ??? 1100 1210 1331 Założenia: in=10% π = 0.
Po pierwszym roku eksploatacja pewnej maszyny (po odliczeniu wszystkich kosztów!) da czysty zysk równy Po drugim roku zysk wyniesie 1210, a po trzecim – Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. Cena maszyny wynosi Czy warto ją kupić? czas ??? 1100 1210 1331 Założenia: in=10% π = 0.

42 1100zł•1/[(1+i)1]+1210zł•1/[(1+i)2]+1331zł •1/[(1+i)3]
Po pierwszym roku eksploatacja pewnej maszyny (po odliczeniu wszystkich kosztów!) da czysty zysk równy Po drugim roku zysk wyniesie 1210, a po trzecim – Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. Cena maszyny wynosi Czy warto ją kupić? czas ??? 1100 1210 1331 Założenia: in=10% π = 0. 1100zł•1/[(1+i)1]+1210zł•1/[(1+i)2]+1331zł •1/[(1+i)3] = 1000 zł zł zł = 3000 zł.

43 ZADANIE Pewna firma wyemitowała obligację; nabywca za rok dostanie 3300 i za dwa lata 3630 i za 3 lata Roczna stopa procentowa wynosi 10%; nie ma ryzyka i inflacji. Ile należałoby ulokować w banku, aby wejść w posiadanie ta-kiego strumienia dochodów, jak ten, który otrzyma nabywca obligacji (zastosuj dyskontowanie)?

44 Pewna firma wyemitowała obligację; nabywca za rok dostanie 3300 i za dwa lata 3630 i za 3 lata Roczna stopa procentowa wynosi 10%; nie ma ryzyka i inflacji. Ile należałoby ulokować w banku, aby wejść w posiadanie ta-kiego strumienia dochodów, jak ten, który otrzyma nabywca obligacji (zastosuj dyskontowanie)? 33001/(1+0,1) 1/(1+0,1) 1/(1+0,1)3 = 3000 = 9000.

45 Pewna firma wyemitowała obligację; nabywca za rok dostanie 3300 i za dwa lata 3630 i za 3 lata Roczna stopa procentowa wynosi 10%; nie ma ryzyka i inflacji. Ile należałoby ulokować w banku, aby wejść w posiadanie ta-kiego strumienia dochodów, jak ten, który otrzyma nabywca obligacji (zastosuj dyskontowanie)? 33001/(1+0,1) 1/(1+0,1) 1/(1+0,1)3 = 3000 = 9000. b) Ile maksymalnie warto zapłacić za tę obligację?

46 Pewna firma wyemitowała obligację; nabywca za rok dostanie 3300 i za dwa lata 3630 i za 3 lata Roczna stopa procentowa wynosi 10%; nie ma ryzyka i inflacji. Ile należałoby ulokować w banku, aby wejść w posiadanie ta-kiego strumienia dochodów, jak ten, który otrzyma nabywca obligacji (zastosuj dyskontowanie)? 33001/(1+0,1) 1/(1+0,1) 1/(1+0,1)3 = 3000 = 9000. b) Ile maksymalnie warto zapłacić za tę obligację? 9000.

47 Pewna firma wyemitowała obligację; nabywca za rok dostanie 3300 i za dwa lata 3630 i za 3 lata Roczna stopa procentowa wynosi 10%; nie ma ryzyka i inflacji. Ile należałoby ulokować w banku, aby wejść w posiadanie ta-kiego strumienia dochodów, jak ten, który otrzyma nabywca obligacji (zastosuj dyskontowanie)? 33001/(1+0,1) 1/(1+0,1) 1/(1+0,1)3 = 3000 = 9000. b) Ile maksymalnie warto zapłacić za tę obligację? 9000. c) Co wspólnego mają ze sobą odpowiedzi na pytania (a) i (b) (odpowiedz jednym zdaniem)?

48 Pewna firma wyemitowała obligację; nabywca za rok dostanie 3300 i za dwa lata 3630 i za 3 lata Roczna stopa procentowa wynosi 10%; nie ma ryzyka i inflacji. Ile należałoby ulokować w banku, aby wejść w posiadanie ta-kiego strumienia dochodów, jak ten, który otrzyma nabywca obligacji (zastosuj dyskontowanie)? 33001/(1+0,1) 1/(1+0,1) 1/(1+0,1)3 = 3000 = 9000. b) Ile maksymalnie warto zapłacić za tę obligację? 9000. c) Co wspólnego mają ze sobą odpowiedzi na pytania (a) i (b) (odpowiedz jednym zdaniem)? Odpowiedź na pytanie (b) wynika z odpowiedzi na pytanie (a). Za tę obligację nie warto płacić więcej niż 9000, bo takie same dochody, jak te, których uzyskanie zapewnia posiadanie tej obligacji, można osiągnąć, lokując w banku właśnie kwotę 9000.

49 Pewna firma wyemitowała obligację; nabywca za rok dostanie 3300 i za dwa lata 3630 i za 3 lata Roczna stopa procentowa wynosi 10%; nie ma ryzyka i inflacji. Ile należałoby ulokować w banku, aby wejść w posiadanie ta-kiego strumienia dochodów, jak ten, który otrzyma nabywca obligacji (zastosuj dyskontowanie)? 33001/(1+0,1) 1/(1+0,1) 1/(1+0,1)3 = 3000 = 9000. b) Ile maksymalnie warto zapłacić za tę obligację? 9000. c) Co wspólnego mają ze sobą odpowiedzi na pytania (a) i (b) (odpowiedz jednym zdaniem)? Odpowiedź na pytanie (b) wynika z odpowiedzi na pytanie (a). Za tę obligację nie warto płacić więcej niż 9000, bo takie same dochody, jak te, których uzyskanie zapewnia posiadanie tej obligacji, można osiągnąć, lokując w banku właśnie kwotę 9000. d) Pokaż, że tej obligacji nie warto jej kupić po cenie wyższej i że jej kupno po cenie niższej jest opłacalne.

50 Pewna firma wyemitowała obligację; nabywca za rok dostanie 3300 i za dwa lata 3630 i za 3 lata Roczna stopa procentowa wynosi 10%; nie ma ryzyka i inflacji. Ile należałoby ulokować w banku, aby wejść w posiadanie ta-kiego strumienia dochodów, jak ten, który otrzyma nabywca obligacji (zastosuj dyskontowanie)? 33001/(1+0,1) 1/(1+0,1) 1/(1+0,1)3 = 3000 = 9000. b) Ile maksymalnie warto zapłacić za tę obligację? 9000. c) Co wspólnego mają ze sobą odpowiedzi na pytania (a) i (b) (odpowiedz jednym zdaniem)? Odpowiedź na pytanie (b) wynika z odpowiedzi na pytanie (a). Za tę obligację nie warto płacić więcej niż 9000, bo takie same dochody, jak te, których uzyskanie zapewnia posiadanie tej obligacji, można osiągnąć, lokując w banku właśnie kwotę 9000. d) Pokaż, że tej obligacji nie warto jej kupić po cenie wyższej i że jej kupno po cenie niższej jest opłacalne. Na przykład, tej obligacji nie warto kupić za 9001 zł, bo takie same dochody, jak te, których uzyskanie zapewnia jej posiadanie, można uzyskać, lokując w banku kwotę równą o 1 zł mniej, czyli jedynie 9000 zł. Warto natomiast kupić tę obligację za 8999 zł, bo żeby w tej gospodarce osiągnąć takie same dochody, jak te, których uzyskanie zapewnia posiadanie tej obligacji, trzeba ulokować kwotę większą o 1 zł, czyli kwotę 9000 zł.

51 ZADANIE Po pierwszym roku posiadacz obligacji dostanie 1100 zł i dodatkowo po drugim roku 1210 zł i dodatkowo po trzecim roku – 1331 zł. Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. a) Ile wynosi kwota zysków wypłaconych posiadaczowi tej obligacji w ciągu trzech lat?

52 Po pierwszym roku posiadacz obligacji dostanie 1100 zł i dodatkowo po drugim roku 1210 zł i dodatkowo po trzecim roku – 1331 zł. Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. a) Ile wynosi kwota zysków wypłaconych posiadaczowi tej obligacji w ciągu trzech lat? a) 1100 zł zł zł = 3641 zł.

53 Po pierwszym roku posiadacz obligacji dostanie 1100 zł i dodatkowo po drugim roku 1210 zł i dodatkowo po trzecim roku – 1331 zł. Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. a) Ile wynosi kwota zysków wypłaconych posiadaczowi tej obligacji w ciągu trzech lat? a) 1100 zł zł zł = 3641 zł. b) Do jakiej kwoty urosłoby 3000 zł ulokowane w banku na 10% na trzy lata (zastosuj wzór na future value)?

54 Po pierwszym roku posiadacz obligacji dostanie 1100 zł i dodatkowo po drugim roku 1210 zł i dodatkowo po trzecim roku – 1331 zł. Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. a) Ile wynosi kwota zysków wypłaconych posiadaczowi tej obligacji w ciągu trzech lat? a) 1100 zł zł zł = 3641 zł. b) Do jakiej kwoty urosłoby 3000 zł ulokowane w banku na 10% na trzy lata (zastosuj wzór na future value)? b) 3000 zł·(1 + 10%)3 = zł.

55 Po pierwszym roku posiadacz obligacji dostanie 1100 zł i dodatkowo po drugim roku 1210 zł i dodatkowo po trzecim roku – 1331 zł. Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. a) Ile wynosi kwota zysków wypłaconych posiadaczowi tej obligacji w ciągu trzech lat? a) 1100 zł zł zł = 3641 zł. b) Do jakiej kwoty urosłoby 3000 zł ulokowane w banku na 10% na trzy lata (zastosuj wzór na future value)? b) 3000 zł·(1 + 10%)3 = zł. c) Czy złotówki składające się na obie te kwoty mają taką samą wartość?

56 Po pierwszym roku posiadacz obligacji dostanie 1100 zł i dodatkowo po drugim roku 1210 zł i dodatkowo po trzecim roku – 1331 zł. Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. a) Ile wynosi kwota zysków wypłaconych posiadaczowi tej obligacji w ciągu trzech lat? a) 1100 zł zł zł = 3641 zł. b) Do jakiej kwoty urosłoby 3000 zł ulokowane w banku na 10% na trzy lata (zastosuj wzór na future value)? b) 3000 zł·(1 + 10%)3 = zł. c) Czy złotówki składające się na obie te kwoty mają taką samą wartość? c) Nie. Ludzie cenią pieniądze tym bardziej, im szybciej je dostają. Oznacza to np., że złotówki składające się na kwotę, o której jest mowa w podpunkcie (b), są mniej warte od wielu złotówek wchodzących w skład kwoty, o której jest mowa w podpunkcie (a).

57 Po pierwszym roku posiadacz obligacji dostanie 1100 zł i dodatkowo po drugim roku 1210 zł i dodatkowo po trzecim roku – 1331 zł. Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. a) Ile wynosi kwota zysków wypłaconych posiadaczowi tej obligacji w ciągu trzech lat? a) 1100 zł zł zł = 3641 zł. b) Do jakiej kwoty urosłoby 3000 zł ulokowane w banku na 10% na trzy lata (zastosuj wzór na future value)? b) 3000 zł·(1 + 10%)3 = zł. c) Czy złotówki składające się na obie te kwoty mają taką samą wartość? c) Nie. Ludzie cenią pieniądze tym bardziej, im szybciej je dostają. Oznacza to np., że złotówki składające się na kwotę, o której jest mowa w podpunkcie (b), są mniej warte od wielu złotówek wchodzących w skład kwoty, o której jest mowa w podpunkcie (a). d) Czy to prawda, że z odpowiedzi na pytania (a) i (b) wynika, iż tej obligacji nie warto kupić za 3000 zł? Wszak 3993 zł to więcej niż 3642 zł?

58 Po pierwszym roku posiadacz obligacji dostanie 1100 zł i dodatkowo po drugim roku 1210 zł i dodatkowo po trzecim roku – 1331 zł. Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. a) Ile wynosi kwota zysków wypłaconych posiadaczowi tej obligacji w ciągu trzech lat? a) 1100 zł zł zł = 3641 zł. b) Do jakiej kwoty urosłoby 3000 zł ulokowane w banku na 10% na trzy lata (zastosuj wzór na future value)? b) 3000 zł·(1 + 10%)3 = zł. c) Czy złotówki składające się na obie te kwoty mają taką samą wartość? c) Nie. Ludzie cenią pieniądze tym bardziej, im szybciej je dostają. Oznacza to np., że złotówki składające się na kwotę, o której jest mowa w podpunkcie (b), są mniej warte od wielu złotówek wchodzących w skład kwoty, o której jest mowa w podpunkcie (a). d) Czy to prawda, że z odpowiedzi na pytania (a) i (b) wynika, iż tej obligacji nie warto kupić za 3000 zł? Wszak 3993 zł to więcej niż 3642 zł? d) Nie wynika. Otrzymawszy 1100 zł po pierwszym roku, właściciel obligacji może ulokować tę kwotę w banku na 10% na dwa lata. Podobnie, otrzymawszy po drugim roku 1210 zł, właściciel obligacji może ulokować tę kwotę w banku na 10% na rok. W efekcie po trzecim roku suma jego dochodów okaże się równa 3993 zł.

59 ZADANIE Hipotecjusz może zainwestować 4000 gb i po 6 miesiącach zyskać 401 gb. Bank of Hypothetia oprocentowuje wkłady procentem skła-danym przy półrocznej kapitalizacji odsetek. Po roku nominalna wartość wkładu wzrasta o 21%, nie ma ryzyka i inflacji. a) Czy opłaca się inwestować?

60 Hipotecjusz może zainwestować 4000 gb i po 6 miesiącach zyskać 401 gb
Hipotecjusz może zainwestować 4000 gb i po 6 miesiącach zyskać 401 gb. Bank of Hypothetia oprocentowuje wkłady procentem skła-danym przy półrocznej kapitalizacji odsetek. Po roku nominalna wartość wkładu wzrasta o 21%, nie ma ryzyka i inflacji. a) Czy opłaca się inwestować? Tak. 1•(1+x)2=1,21, to x=0,1 (10%!)

61 Hipotecjusz może zainwestować 4000 gb i po 6 miesiącach zyskać 401 gb
Hipotecjusz może zainwestować 4000 gb i po 6 miesiącach zyskać 401 gb. Bank of Hypothetia oprocentowuje wkłady procentem skła-danym przy półrocznej kapitalizacji odsetek. Po roku nominalna wartość wkładu wzrasta o 21%, nie ma ryzyka i inflacji. a) Czy opłaca się inwestować? Tak. 1•(1+x)2=1,21, to x=0,1 (10%!) b) Po roku pojawiła się inflacja (5% na pół roku). Oblicz realną pół-roczną stopę procentową.

62 Hipotecjusz może zainwestować 4000 gb i po 6 miesiącach zyskać 401 gb
Hipotecjusz może zainwestować 4000 gb i po 6 miesiącach zyskać 401 gb. Bank of Hypothetia oprocentowuje wkłady procentem skła-danym przy półrocznej kapitalizacji odsetek. Po roku nominalna wartość wkładu wzrasta o 21%, nie ma ryzyka i inflacji. a) Czy opłaca się inwestować? Tak. 1•(1+x)2=1,21, to x=0,1 (10%!) b) Po roku pojawiła się inflacja (5% na pół roku). Oblicz realną pół-roczną stopę procentową. ir ≈ in – π, to ir ≈ 10% - 5% = 5%.

63 ZADANIE a) Symbol „i” oznacza stopę procentową; jaki proces opisuje nas-tępujący wzór: An = A(1 + i)n? Odpowiedz szczegółowo.

64 a) Symbol „i” oznacza stopę procentową; jaki proces opisuje nas-tępujący wzór: An = A(1 + i)n? Odpowiedz szczegółowo. a) Chodzi o zwiększanie się wartości kwoty pieniądza poddanej działaniu procentu składanego.

65 a) Symbol „i” oznacza stopę procentową; jaki proces opisuje nas-tępujący wzór: An = A(1 + i)n? Odpowiedz szczegółowo. Chodzi o zwiększanie się wartości kwoty pieniądza poddanej działaniu procentu składanego. b) Proces, o którym była mowa w podpunkcie (a) sprawił, że kwota A podwoiła się. Zmień wzór z podpunktu (a) w taki sposób, aby opisywał on to zdarzenie.

66 a) Symbol „i” oznacza stopę procentową; jaki proces opisuje nas-tępujący wzór: An = A(1 + i)n? Odpowiedz szczegółowo. Chodzi o zwiększanie się wartości kwoty pieniądza poddanej działaniu procentu składanego. b) Proces, o którym była mowa w podpunkcie (a) sprawił, że kwota A podwoiła się. Zmień wzór z podpunktu (a) w taki sposób, aby opisywał on to zdarzenie. b) Oto zmieniony wzór: 2A = A(1 + i)n.

67 a) Symbol „i” oznacza stopę procentową; jaki proces opisuje nas-tępujący wzór: An = A(1 + i)n? Odpowiedz szczegółowo. Chodzi o zwiększanie się wartości kwoty pieniądza poddanej działaniu procentu składanego. b) Proces, o którym była mowa w podpunkcie (a) sprawił, że kwota A podwoiła się. Zmień wzór z podpunktu (a) w taki sposób, aby opisywał on to zdarzenie. b) Oto zmieniony wzór: 2A = A(1 + i)n. c) Wylicz taką (roczną) stopę procentową, i, przy której dokład-nie po 5 latach następuje podwojenie się wkładu bankowego.

68 a) Symbol „i” oznacza stopę procentową; jaki proces opisuje nas-tępujący wzór: An = A(1 + i)n? Odpowiedz szczegółowo. Chodzi o zwiększanie się wartości kwoty pieniądza poddanej działaniu procentu składanego. b) Proces, o którym była mowa w podpunkcie (a) sprawił, że kwota A podwoiła się. Zmień wzór z podpunktu (a) w taki sposób, aby opisywał on to zdarzenie. b) Oto zmieniony wzór: 2A = A(1 + i)n. c) Wylicz taką (roczną) stopę procentową, i, przy której dokład-nie po 5 latach następuje podwojenie się wkładu bankowego. c) Wykorzystam wzór z podpunktu (b): 2A = A(1 + i)5. Po jego rozwiązaniu okazuje się, że i = [2^(1/5)] – 1 = 0,

69 ZADANIE Za 900 gb można kupić weksel, który po trzech latach zostanie wykupiony za 1331 gb. Stopa procentowa równa się 10%. a) Czy warto kupić ten weksel? Dlaczego?

70 Za 900 gb można kupić weksel, który po trzech latach zostanie wykupiony za 1331 gb. Stopa procentowa równa się 10%. a) Czy warto kupić ten weksel? Dlaczego? Wygląda na to, że tak... Przecież zaktualizowana wartość 1331 gb wynosi 1000 gb, czyli więcej niż 900 gb.

71 Za 900 gb można kupić weksel, który po trzech latach zostanie wykupiony za 1331 gb. Stopa procentowa równa się 10%. a) Czy warto kupić ten weksel? Dlaczego? Wygląda na to, że tak... Przecież zaktualizowana wartość 1331 gb wynosi 1000 gb, czyli więcej niż 900 gb. b) Jak się okazało, 10% wynosi realna stopa procentowa, zaś tempo inflacji równa się 5%. Czym realna stopa procentowa różni się od nominalnej stopy procentowej? Podaj odpowiedni wzór i oblicz nominalną stopę procentową.

72 Za 900 gb można kupić weksel, który po trzech latach zostanie wykupiony za 1331 gb. Stopa procentowa równa się 10%. a) Czy warto kupić ten weksel? Dlaczego? Wygląda na to, że tak... Przecież zaktualizowana wartość 1331 gb wynosi 1000 gb, czyli więcej niż 900 gb. b) Jak się okazało, 10% wynosi realna stopa procentowa, zaś tempo inflacji równa się 5%. Czym realna stopa procentowa różni się od nominalnej stopy procentowej? Podaj odpowiedni wzór i oblicz nominalną stopę procentową. in = ir + π. A zatem nominalna stopa procentowa, in, równa się realna stopa procentowa, ir, plus tempo inflacji, π, czyli równa się 10%+5%=15%.

73 Za 900 gb można kupić weksel, który po trzech latach zostanie wykupiony za 1331 gb. Stopa procentowa równa się 10%. a) Czy warto kupić ten weksel? Dlaczego? Wygląda na to, że tak... Przecież zaktualizowana wartość 1331 gb wynosi 1000 gb, czyli więcej niż 900 gb. b) Jak się okazało, 10% wynosi realna stopa procentowa, zaś tempo inflacji równa się 5%. Czym realna stopa procentowa różni się od nominalnej stopy procentowej? Podaj odpowiedni wzór i oblicz nominalną stopę procentową. in = ir + π. A zatem nominalna stopa procentowa, in, równa się realna stopa procentowa, ir, plus tempo inflacji, π, czyli równa się 10%+5%=15%. c) Jeszcze raz odpowiedz na pytanie, czy warto kupić ten weksel. Uzasadnij odpowiedź.

74 Za 900 gb można kupić weksel, który po trzech latach zostanie wykupiony za 1331 gb. Stopa procentowa równa się 10%. a) Czy warto kupić ten weksel? Dlaczego? Wygląda na to, że tak... Przecież zaktualizowana wartość 1331 gb wynosi 1000 gb, czyli więcej niż 900 gb. b) Jak się okazało, 10% wynosi realna stopa procentowa, zaś tempo inflacji równa się 5%. Czym realna stopa procentowa różni się od nominalnej stopy procentowej? Podaj odpowiedni wzór i oblicz nominalną stopę procentową. in = ir + π. A zatem nominalna stopa procentowa, in, równa się realna stopa procentowa, ir, plus tempo inflacji, π, czyli równa się 10%+5%=15%. c) Jeszcze raz odpowiedz na pytanie, czy warto kupić ten weksel. Uzasadnij odpowiedź. Jednak nie warto. Szukając zaktualizowanej wartości 1331 gb, ktore dostaniemy za 3 lata powinniśmy w tej sytuacji posłużyć się nominalną, in, a nie realną, ir, stopą procentową. (To zgodnie z tą stopą procentową naliczają oprocentowanie np. banki). W efekcie okazuje się, ta wartość zaktualizowana wynosi mniej niż 900 gb! [1331 gb  1/(1 + 0,15)3]  875,15 gb.


Pobierz ppt "III. WARTOŚĆ A CZAS."

Podobne prezentacje


Reklamy Google