Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej.

Slides:



Advertisements
Podobne prezentacje
Modelowanie i symulacja
Advertisements

Rozwiązywanie równań różniczkowych metodą Rungego - Kutty
Metody badania stabilności Lapunowa
Metody numeryczne część 1. Rozwiązywanie układów równań liniowych.
IV Tutorial z Metod Obliczeniowych
Różniczkowanie numeryczne
Metody rozwiązywania układów równań liniowych
Metody Numeryczne Wykład no 12.
Wykład no 9.
Przykład Równanie wahadła: Niech =1s -2 Warunki początkowe: około 86°
Przykład: Dana jest linia długa o długości L 0 bez strat o stałych kilometrycznych L,C.Na początku linii zostaje załączona siła elektromotoryczna e(t),
Wykład no 11.
Problemy nieliniowe Rozwiązywanie równań nieliniowych o postaci:
Metoda węzłowa w SPICE.
Problemy nieliniowe Rozwiązywanie równań nieliniowych o postaci:
„METODA FOURIERA DLA JEDNORODNYCH WARUNKÓW BRZEGOWYCH f(0)=f(a)=0”
OPORNOŚĆ HYDRAULICZNA, CHARAKTERYSTYKA PRZEPŁYWU
Metody matematyczne w Inżynierii Chemicznej
Metoda różnic skończonych I
MECHANIKA NIEBA WYKŁAD r.
Metody matematyczne w inżynierii chemicznej
Metody matematyczne w Inżynierii Chemicznej
Metody Lapunowa badania stabilności
AUTOMATYKA i ROBOTYKA (wykład 6)
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Zakładamy a priori istnienie rozwiązania α układu równań.
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Wprowadzenie do ODEs w MATLAB-ie
Źródła błędów w obliczeniach numerycznych
Rozwiązywanie liniowych układów równań metodami iteracyjnymi.
Drgania punktu materialnego
Szeregi funkcyjne dr Małgorzata Pelczar.
Metody matematyczne w Inżynierii Chemicznej
METHOD OF LINES (MOL) Poznan University of Life Sciences Department of Hydraulic and Sanitary Engineering Hamdi, Schiesser & Griffiths:
Tematyka zajęć LITERATURA
Metody matematyczne w inżynierii chemicznej
Metody nieinkluzyjne: Metoda iteracji prostej.
C(r) całka korelacji: – norma badanej wielkości fizycznej
Dynamika punktu materialnego Dotychczas ruch był opisywany za pomocą wektorów r, v, oraz a - rozważania geometryczne. Uwzględnienie przyczyn ruchu - dynamika.
jawny schemat Eulera [globalny błąd O(Dt)]
Równania różniczkowe zwyczajne: problem brzegowy [1D]
Układ jest w stanie X. Do jakiego stanu przejdzie? wybieramy losowo stan próbny X p z pewnego otoczenia stanu X X p :=X+(  x 1,  x 2,...,  x n ) – 
region bezwzględnej stabilności dla ogólnej niejawnej metody RK
Problem opisany RRZ jest sztywny gdy: jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bezwzględna nakłada silniejsze ograniczenia na.
Problem opisany RRZ jest sztywny gdy: jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bezwzględna nakłada silniejsze ograniczenia na.
Szacowanie błędu lokalnego w metodach jednokrokowych
Symulacje obliczeniowe: w technice: inżynieria obliczeniowa: modelowanie i symulacja zjawisk i działania urządzeń. badania i optymalizacji procesów produkcyjnych.
[przepis na kolejne wartości rozwiązania liczone
Dyskretyzacja równania dyfuzji cd.
U(t) t  t u’(t)=f(t,u) u(t+  t)=u(t)+  (t,u(t),  t) RRZ: Jednokrokowy schemat różnicowy.
inżynierskie metody numeryczne
Czy błąd całkowity maleje gdy Dt maleje ? Czy maleje do zera?
jawna metoda Eulera niejawna metoda Eulera
U(0)=0 proste równanie traktowane jawnym schematem Eulera.
Jawny schemat Eulera Czy błąd całkowity maleje gdy  t maleje ? Czy maleje do zera? eksperyment numeryczny problem początkowy: u’= u, u(0)=1 z rozwiązaniem.
Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym a=vdt/dx upwind: centralny:
yi b) metoda różnic skończonych
Na szczęście nie jesteśmy skazani na iterację funkcjonalną 2)metoda Newtona-Raphsona (stycznych) szukamy zera równania nieliniowegoF(x) F(x n +  x)=F(x.
Liniowe metody wielokrokowe dla równań zwyczajnych starsze niż RK o 50 lat użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania.
© Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH Temat – 5 Modelowanie różniczkowe.
Treść dzisiejszego wykładu l Postać standardowa zadania PL. l Zmienne dodatkowe w zadaniu PL. l Metoda simpleks –wymagania metody simpleks, –tablica simpleksowa.
Teoria sterowania Wykład /2016
Metody matematyczne w Inżynierii Chemicznej
Analiza numeryczna i symulacja systemów
Podstawy automatyki I Wykład /2016
Drgania punktu materialnego Prowadzący: dr Krzysztof Polko
jest najbardziej efektywną i godną zaufania metodą,
MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH
Zapis prezentacji:

Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej zmienna, np.: czas i położenie u x t t+dt np. wychylenie u(x,t) struny w położeniu x i czasie t równania cząstkowe: nie zawsze jedną ze zmiennych jest czas, ale zawsze opisują obiekty rozciągłe druga zasada dynamiki Newtona dla struny

równania różniczkowe zwyczajne: jedna zmienna niezależna np. czas dla elementów punktowych, nierozciągłych v(t) RC L napięciowe prawo Kirchoffa równanie liniowe drugiego rzędu r=(x,y) układ równań: ruch w polu centralnym (nieliniowe) równania Lotki-Volterry z – populacja zajęcy, w– wilków  naturalne tempo wzrostu pop. zajęcy (pod nieobecność w),  – zaniku wilków bez z  parametry oddziaływania populacji układ równań nieliniowych 2 rzędu – problem początkowy po zadaniu x(t=0),y(t=0), x’(t=0), y’(t=0). układ r. 1 rzędu nieliniowe

zwyczajne zagadnienie brzegowe (zamiast czasu, położenie w 1D -element rozciągły opisany jedną współrzędną) np. równanie Eulera-Bernoulliego: wygięcie jednorodnego elastycznego pręta pod wpływem rozłożonego obciążenia w(x) lewy koniec: zamocowany i podparty prawy koniec: swobodny zwyczajne rzędu drugiego lub wyższego + warunki na funkcje i pochodne na końcach przedziału

Zaczynamy od rozwiązywania równań zwyczajnych 1)prostsza analiza niż dla cząstkowych 2)wprowadzimy pojęcia zbieżności, dokładności, stabilności itd. przydatne do metod rozwiązywania równań cząstkowych 3)jedna z metod rozwiązywania równań cząstkowych (metoda linii) - sprowadzamy równanie cząstkowe do układu równań zwyczajnych

Metoda linii: układy równań różniczkowych zwyczajnych - po dyskretyzacji przestrzennej cząstkowego równania różniczkowego równanie adwekcji x x 1 x 2 x 3 x 4 x 5 centralny iloraz na pochodną przestrzenną u n (t)=u(x n,t) xx układ N równań zwyczajnych t

zwyczajne równania różniczkowe rzędu pierwszego [oraz ich układy] warianty: liniowe (układy równań liniowych rozwiązuje się analitycznie) inna forma – nieliniowe  =0 –jednorodne jeśli f=f(t) (nie zależy od y) rozwiązanie – całka nieoznaczona jeśli f=f(y) (nie zależy od t) równanie autonomiczne (nie podlega zaburzeniom zależnym od t)

zagadnienie początkowe: równanie różniczkowe + warunek początkowy jeśli f=f(t) rozwiązanie: całka oznaczona

Równanie różniczkowe zwyczajne dowolnego rzędu można sprowadzić do układu równań pierwszego rzędu wystarczy jeśli potrafimy efektywnie rozwiązać układ równań rzędu pierwszego Przykład: Zmiana oznaczeń Definicja traktowana jako jedno z równań do rozwiązania Równanie na najwyższą pochodną - jedyne „niedefinicyjne” Układ równań do rozwiązania

O konieczności numerycznego rozwiązywania RRZ 1R: analitycznie rozwiązać można układ równań liniowych. nieliniowe: na ogół nie. V2V2 V1V1 r1r1 r2r2 V3V3 r3r3 Układ 2 ciał oddziaływujących grawitacyjnie - analitycznie rozwiązany przez Newtona Układ 3: ciał – nie posiada analitycznego rozwiązania ponadto: automaty mające reagować na otoczenie nie znają postaci analitycznej f : ta jest brana z pomiarów bez wzoru na f skazani jesteśmy na rachunki numeryczne zazwyczaj nie znamy rozwiązań analitycznych równań nieliniowych

Numeryczne rozwiązywanie problemu początkowego jeśli potrafimy rozwiązać układ równań rzędu pierwszego -rozwiążemy każdy różniczkowy problem początkowy

Dobra metoda ma zapewnić zadaną dokładność przy pomocy minimalnej liczby wywołań f (przy maksymalnym kroku czasowym) przy dyskusji metod– zakłada się, że wyliczenie f jest kosztowne – [jeśli nie jest kosztowne – nie ma problemu] Dyskretyzacja zmiennej czasowej t  t n+1  t n+2 n n+1 n+2 itd. Numeryczne rozwiązywanie problemu początkowego dyskretyzacja zmiennej czasowej sprowadza równania różniczkowe do różnicowych (metoda różnic skończonych)

im więcej znamy pochodnych w punkcie t tym większe otoczenie t możemy dobrze przybliżyć obciętym rozwinięciem Taylora tw. Taylora - między t a  t istnieje taki punkt , że ograniczenie na resztę: maksymalna wartość czwartej pochodnej u w okolicy t stąd O(  t 4 )

u=exp(-t 2 /2) Rząd błędu obcięcia w rozwinięciu Taylora u(0)=1u=exp(-t 2 /2) rozwijane wokół t=0 [w roz.T.  t=t]

Jawny schemat Eulera

błąd lokalny schematu różnicowego: odchylenie wyniku numerycznego od dokładnego, które pojawia się w pojedynczym kroku całkowania Jawny schemat Eulera można wyliczyć bo znamy t i u(t) błąd lokalny jawnego Eulera w kroku t n-1  t n wg tw. Taylora ln =ln = przepis na pojedynczy krok z u(t) do u(t+  t )

Jawny schemat Eulera... krok wcale nie musi być taki sam dla każdego n, ale tak przyjmiemy do analizy stosowany wielokrotnie:

Jawny schemat Eulera dokładny u(t)=exp(t) dla du/dt=u Jawny schemat Eulera tt tt tt W rozwiązaniu dokładnym nachylenie u dane jest przez u w każdej chwili Jawnym schemat Eulera zakłada, że nachylenie jest stałe w jednym kroku czasowym i bierze je z wartości przybliżonej dla początku kroku Tylko u 0 = u (0) później u n < u(t n ) Co prowadzi do akumulacji błędów

każdy krok wykonywany z nachyleniem branym z chwili, w której krok się zaczyna Zmniejszamy krok  t: Błąd lokalny zmaleje, ale do ustalonej chwili T musimy wykonać więcej kroków. W każdym kroku wprowadzamy nowy błąd. Błędy się akumulują. Czy opłaca się zmniejszać kroki czasowe? Definicja: Błąd globalny – różnica między rozwiązaniem dokładnym a numerycznym w chwili t „Czy się opłaca” znaczy: Czy błąd globalny maleje gdy  t maleje ? a jeśli tak - czy maleje do zera? (czy możliwe jest dokładne rozwiązanie równania różniczkowego uzyskane jako granica schematu różnicowego) Jawny schemat Eulera dokładny u(t)=exp(t) dla du/dt=u

Jawny schemat Eulera Czy błąd całkowity maleje gdy  t maleje ? Czy maleje do zera? eksperyment numeryczny problem początkowy: u’= u, u(0)=1 z rozwiązaniem dokładnym u(t)=exp( t)   t=0.001 dokładny jawny Euler e (błąd globalny) = dokładny - numeryczny

Jawny schemat Eulera Czy błąd globalny maleje gdy  t maleje ? Czy maleje do zera? eksperyment numeryczny problem początkowy: u’= u, u(0)=1 z rozwiązaniem dokładnym u(t)=exp( t) zmniejszajmy krok czasowy, jaki wynik w chwili t=0.01 ? [1/e= ] n  t u n exp(  )  u n     błąd globalny w chwili t=0.01 wydaje się zmieniać liniowo z krokiem czasowym  interpretacja: błąd lokalny rzędu  t 2 popełniony n = t/  t razy daje błąd globalny rzędu  t

Definicja: Metody różnicowa jest zbieżna jeśli błąd globalny e znika do zera w chwili T gdy z  t do 0 zmniejszajmy krok czasowy, jaki wynik w chwili t=0.01 ? [1/e= ] n  t u n exp(  )  u n     błąd globalny w chwili t=0.01 wydaje się zmieniać liniowo z krokiem czasowym

czy jawny schemat Eulera jest zbieżny? sprawdźmy analitycznie propagacje błędu (błąd globalny) dla ogólniejszego problemu modelowego. problem modelowy: ogólne liniowe niejednorodne o stałych współczynnikach zmiana y proporcjonalna do wartości y i niejednorodności  rozwiązanie analityczne dla =0 rozwiązanie analityczne dla  =0

czy jawny schemat Eulera jest zbieżny? sprawdźmy analitycznie propagacje błędu (błąd globalny) dla ogólniejszego problemu modelowego. problem modelowy: ogólne liniowe niejednorodne o stałych współczynnikach zmiana y proporcjonalna do wartości y i niejednorodności  rozwiązanie analityczne dla =0 rozwiązanie analityczne dla  =0 ogólne rozwiązanie analityczne:

czy jawny schemat Eulera jest zbieżny? sprawdźmy analitycznie propagacje błędu (błąd globalny) dla ogólniejszego problemu modelowego. problem modelowy: ogólne liniowe niejednorodne o stałych współczynnikach zmiana y proporcjonalna do wartości y i niejednorodności  rozwiązanie analityczne: warunek początkowy wzmacniany z czynnikiem exp( t) ten sam czynnik [tzw. propagator] wzmacnia niejednorodność  niejednorodność wchodzi do rozwiązania tak jak warunek początkowy – z opóźnieniem odpowiadającym chwili w której się pojawia Zasada Duhamel  t=0 t

oznaczenia y n = rozwiązanie równania różnicowego w chwili t n =  t n y(t n ) = rozwiązanie dokładne r. różniczkowego schemat Eulera: odpowiedni wzór dla rozwiązania dokładnego z równania różniczkowego Aby wyliczyć błąd globalny e n+1 =y(t n+1 )-y n+1 odejmujemy stronami podkreślone wzory

e n+1 =y(t n+1 )-y n+1 gdzieś między t n a t n+1 błąd globalny w kroku n+1= błąd globalny w kroku n wzmocniony o czynnik (1+  t) i powiększony o nowy błąd lokalny cofnijmy się do chwili początkowej wnwn w n-1 (Euler) (dokładny)

dyskretna zasada Duhamel: błąd początkowy wzmacniany jak (1+  t) liczba kroków błąd który pojawia się w kroku i-tym wzmacniany w ten sam sposób, co początkowy błędy jawnego Eulera wzmacniane jak rozwiązanie dokładne w odpowiada  e odpowiada y (1+  t) n odpowiada exp( t n )

Czy metoda zbieżna? ? załóżmy, że potrafimy wstawić warunek początkowy bezbłędnie : e 0 = 0 Zakładamy, że arytmetyka jest dokładna

pierwsze dwa wyrazy r.T. reszta +  t 2 | |^2 /2 exp(  n ) ? Pokazaliśmy, że metoda Eulera zbieżna dla problemu modelowego. Można pokazać, że zbieżna jest dla każdej f (ciągłej w sensie Lipschitza) Jej rząd zbieżności (dokładności) pierwszy

rząd zbieżności (dokładności) określa jakość metody: jak szybko błąd globalny dla chwili T zmierza do zera w funkcji  t jawna metoda Eulera = pierwszy rząd dokładności O(  t) jest to minimalny rząd dokładności dla użytecznej metody zmniejszajmy krok czasowy, jaki wynik w chwili t=0.01 ? [1/e= ] n  t u n exp(  )  u n     10 -5

Definicja: Metody różnicowa jest zbieżna jeśli błąd globalny znika do zera w chwili T gdy z  t do 0 zbieżność a błędy zaokrągleń (skończona dokładność arytmetyki zmiennoprzecinkowej)

błędy zaokrągleń a zbieżność pojedyncza precyzja: 32 bity podwójna : 64 bity arytmetyka 21 – bitowa do tej pory zakładaliśmy, że błędy zaokrągleń nie ma (że arytmetyka dokładna) arytmetyka zmiennoprzecinkowa nie jest dokładna. błąd minimalny zmniejszanie kroku czasowego nie poprawi już wyniku

błędy zaokrągleń a metody różnicowe rozwiązanie równania różniczkowego w chwili t n rozwiązanie równania różnicowego z dokładną arytmetyką rozwiązanie uzyskane z arytmetyką skończonej dokładności błąd całkowity błąd globalny (jak wcześniej zdefiniowano) błąd zaokrąglenia oszacowanie od góry błędu całkowitego

błąd zaokrągleń rzędu liczby wykonanych kroków, czyli 1/dt błąd globalny dla schematu Eulera błędy zaokrągleń a metody różnicowe oszacowanie od góry błędu całkowitego optymalny krok czasowy remedium: używać się schematów o wyższym rzędzie zbieżności niż pierwszy błędy zaokrągleń dają o sobie znać gdy wykonamy zbyt wiele kroków dt błąd

Definicja: Metody różnicowa jest zbieżna jeśli błąd globalny znika do zera w chwili T gdy z  t do 0 błąd zaokrągleń błąd globalny dla schematu Eulera błędy zaokrągleń a metody różnicowe oszacowanie od góry błędu całkowitego optymalny krok czasowy błąd całkowity błąd globalny błąd zaokrąglenia uwaga: definicja zbieżności dotyczy błędu globalnego a nie całkowitego

Wróćmy do eksperymentu numerycznego i zwiększmy krok czasowy do  t=0.05 do bezwzględnej stabilności zasygnalizować sztywność (do której powrócimy) wsteczny Euler sposoby iteracji dla wstecznego Eulera problem początkowy: u’=-100u, u(0)=1 z rozwiązaniem dokładnym u(t)=exp(  t) t n u n iteracja się rozbiega  wniosek: wyniki metody zbieżnej mogą eksplodować dla zbyt dużego kroku czasowego

bezwzględna stabilność schematu różnicowego schemat różnicowy dla du/dt = f (dla danego f) i dla danego kroku czasowego jest bezwzględnie stabilny jeśli kolejne generowane przez niego wartości pozostają skończone. Uwaga: Zbieżność jest cechą schematu niezależnie od f Bezwzględna stabilność określa się dla konkretnego równania W charakterystyce schematów Najczęściej stabilność bezwzględna: określana jest dla autonomicznego problemu liniowego

Weźmy = -1, u(0)=1, rozwiązanie dokładne u(t)=exp(-t) Przepis Eulera: u n+1 =u n -  tu n u ( t ) dokładny  t=0.5  t=0.9  t=1 : wszędzie u ( t )  t=1.2  t=2  t=2.5 uwaga: rozwiązanie bezwzględnie stabilne (np.  t=1 lub  t=2) może być bardzo niedokładne lub wręcz - jakościowo złe = tutaj stałe i niemonotoniczne odpowiednio t t Schemat bezwzględnie stabilny dla  t  2

bezwzględna stabilność jawnej metody Eulera wsp. wzmocnienia wyniki pozostaną skończone dla n   jeśli: u n = u n-1 +  t u n-1

region bezwzględnej stabilności metody: zbiór z=  t, dla których metoda jest bezwzględnie stabilna region bezwzględnej stabilności jawnej metody Eulera: z=  t zbiór punktów odległych od (-1,0) o nie więcej niż 1 koło o środku w (-1,0) i promieniu 1 niestabilność bezwzględna metody dla prawej połowy p. Gaussa = nic dziwnego rozwiązanie dokładne y 0 exp( t) eksploduje do nieskończoności gdy t .  t Re( )  t Im ( ) -2 1 Zmienna zespolona

pozbyć się ograniczenia na krok czasowy: niejawna metoda Eulera jawnametoda Euleraniejawna metoda Eulera jawna metoda Eulerafunkcjonuje jak równanie nieliniowe (funkcjonuje jak podstawienie) „metoda odważna”„metoda ostrożna” zmiana u zgodna z prawą stroną w punkcie docelowym

niejawna metoda Eulera: problem początkowy: u’=-100u, u(0)=1 z rozwiązaniem dokładnym u(t)=exp(  t) t n u n jawny Euler niejawny Euler t n u n e(t n ) (6) (7) (629) itd.. exp(-100 t n ) gaśnie znacznie szybciej niż 1/6 n mało dokładne, ale zawsze to lepiej niż eksplodująca oscylacja jawnego Eulera

niejawna metoda Eulera: region bezwzględnej stabilności  t Re( )  t Im ( ) 1 rejon bezwzględnej stabilności: dopełnienie pustego koła o środku w (1,0) i promieniu 1

1  t Re( )  t Im ( ) =1 – zakres niestabilności  t  (0,2) Niejawny schemat Eulera exp(t) nsE  t=0.1 nsE  t=0.8 Zbliżamy się do  t=1 – wyniki schematu rosną coraz szybciej Dla  t=1 – nieskończoność w pierwszym kroku  t=1.2  t=1.5  t=2 1,-1,1,-1 itd

 t Re( )  t Im ( ) 1  t Re( )  t Im ( ) -2 1 metoda Eulera jawna niejawna metoda Eulera regiony stabilności metod Eulera

 t Re( )  t Im ( ) 1 niejawna metoda Eulera: region bezwzględnej stabilności Re( )<0 : niejawny Euler bezwzględnie stabilny dla dowolnego kroku czasowego takie metody: tzw. A-stabilne dla Re(  poza kołem metoda Eulera jest bezwzględnie stabilna mimo, że rozwiązania równania różniczkowego są niestabilne (patrz wyżej) w tym obszarze metoda jest nadstabilna daje skończone wartości, mimo że rozwiązania dokładne dąży do nieskończoności bezwzględna stabilność nie oznacza dobrej dokładności. W regionie nadstabilności dla Re(  błędy będą rosły w nieskończoność.

jak rozwiązać, gdy nie można rozwikłać równania (f nieliniowe względem u) lub gdy f nieznane w formie wzoru 1)iteracja funkcjonalna iterować do zbieżności jeśli się zbiegnie u  =u  -1 i mamy rozwiązanie równania nieliniowego

problem początkowy: u’=-100u, u(0)=1, dt=0.05 z rozwiązaniem dokładnym u(t)=exp(  t) iteracja funkcjonalna przykład 1, -4, 21, -104, 521, -2604,... kolejne oszacowania: iteracja się nie zbiega  cały zysk z niejawności stracony bo nie potrafimy wykonać kroku t n u n e(t n ) (6) (7) (629)

iteracja funkcjonalna przykład dt=0.01 (1,0,1,0,1,0) dt= , 0.9, 0.91, 0.909, , , , iteracja funkcjonalna się zbiega gdy  t max|f u (t,u)|  1 (w otoczeniu u) iteracja się nie zbiega . zmniejszymy krok dt, zaczynając iterację od u n-1 będziemy bliżej rozwiązania. Może się zbiegnie. u’=-100u,  t 100 < 1 uwaga: w tej sytuacji jawny Euler jest bezwzględnie stabilny dla 2-krotnie większego kroku!  dla jawnego Eulera  t 100 < 2] Z iteracją funkcjonalną stosować wstecznego Eulera nie ma sensu.

iteracja funkcjonalna – zapewniamy zbieżność modyfikując przepis iteracyjny zamiast: „mieszając” nowe i stare rozwiązania z wagą w, 0  w  1 jeśli się zbiegnie – to do rozwiązania schematu niejawnego 1, -4, 21, -104, 521, -2604,... problem początkowy: u’=-100u, u(0)=1, dt=0.05 z rozwiązaniem dokładnym u(t)=exp(  t) oscylująca rozbieżność - stłumimy ją: Zabieg podobny do “podrelaksacji”

problem początkowy: u’=-100u, u(0)=1, dt=0.05 z rozwiązaniem dokładnym u(t)=exp(  t) iterujemy u(dt) w=0.1 w=0.2 w=0.3 wybierając w odpowiedni sposób wagę w: potrafimy ustabilizować iterację i doprowadzić ją do zbieżności.

dt=0.01 (1,0,1,0,1,0) dt= , 0.9, 0.91, 0.909, , , , w=0 w=1 0.8,0.68, 0.608, , , , , , , 0.503, , , , ,..., 1/2 w=.2 (optymalne dla dt=0.05) tutaj optymalne byłoby w=1/2 (zbieżność w jednej iteracji) dla w=.7 0.3,0.58,0.468,0.512,0.4948,0.5003, w=0.2

dt=0.01 (1,0,1,0,1,0) dt= , 0.9, 0.91, 0.909, , , , w=0 w=1 0.8,0.68, 0.608, , , , , , , 0.503, , , , ,..., 1/2 w=.2 (optymalne dla dt=0.05) tutaj optymalne byłoby w=.5 (zbieżność w jednej iteracji natychmiastowa) dla w=.7 0.3,0.58,0.468,0.512,0.4948,0.5003, w=0.2 Problem: 1) w trzeba odpowiednio dobrać (mniejszy krok czasowy, w bliższe 1) 2) dla źle dobranego w iteracja może być wolnozbieżna Proces optymalizacji (np. dynamicznej) w może być kłopotliwy.