Elementy Rachunku Prawdopodobieństwa i Statystyki

Slides:



Advertisements
Podobne prezentacje
Regresja i korelacja materiały dydaktyczne.
Advertisements

ESTYMACJA PRZEDZIAŁOWA
Statystyka Wojciech Jawień
Zmienne losowe i ich rozkłady
BUDOWA MODELU EKONOMETRYCZNEGO
Metody wnioskowania na podstawie podprób
Jak mierzyć zróżnicowanie zjawiska? Wykład 4. Miary jednej cechy Miary poziomu Miary dyspersji (zmienności, zróżnicowania, rozproszenia) Miary asymetrii.
Metody ekonometryczne
Statystyka w doświadczalnictwie
Analiza korelacji.
Niepewności przypadkowe
Wykład 6 Standardowy błąd średniej a odchylenie standardowe z próby
Wykład 4 Rozkład próbkowy dla średniej z rozkładu normalnego
Wykład 5 Przedziały ufności
Wykład 3 Rozkład próbkowy dla średniej z rozkładu normalnego
Wykład 4 Przedziały ufności
Metody Przetwarzania Danych Meteorologicznych Wykład 4
Korelacje, regresja liniowa
Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych  Dr inż. Halina Tarasiuk
Średnie i miary zmienności
Metody ilościowe w biznesie Wykład 1
Hipotezy statystyczne
Elementy Rachunku Prawdopodobieństwa i Statystyki
Elementy Rachunku Prawdopodobieństwa i Statystyki
Konstrukcja, estymacja parametrów
Elementy Rachunku Prawdopodobieństwa i Statystyki
Analiza współzależności cech statystycznych
dr hab. Ryszard Walkowiak prof. nadzw.
Elementy Rachunku Prawdopodobieństwa i Statystyki
Elementy Rachunku Prawdopodobieństwa i Statystyki
Rozkłady wywodzące się z rozkładu normalnego standardowego
BADANIE STATYSTYCZNE Badanie statystyczne to proces pozyskiwania danych na temat rozkładu cechy statystycznej w populacji. Badanie może mieć charakter:
Elementy Rachunku Prawdopodobieństwa i Statystyki
Elementy Rachunku Prawdopodobieństwa i Statystyki
Hipotezy statystyczne
Błędy i niepewności pomiarowe II
Planowanie badań i analiza wyników
Regresja wieloraka.
Testowanie hipotez statystycznych
Dopasowanie rozkładów
Ekonometryczne modele nieliniowe
Wnioskowanie statystyczne
Metoda reprezentacyjna i statystyka małych obszarów z SAS Instytut Statystyki i Demografii SGH dr Dorota Bartosińska Zajęcia 4 Wnioskowanie statystyczne.
Statystyka medyczna Piotr Kozłowski
Ekonometria stosowana
Statystyka w doświadczalnictwie Wydział Technologii Drewna SGGW Studia II stopnia Wykład 3.
Wykład 5 Przedziały ufności
Rozkład wariancji z próby (rozkład  2 ) Pobieramy próbę x 1,x 2,...,x n z rozkładu normalnego o a=0 i  =1. Dystrybuanta rozkładu zmiennej x 2 =x 1 2.
Weryfikacja hipotez statystycznych
Przenoszenie błędów (rachunek błędów) Niech x=(x 1,x 2,...,x n ) będzie n-wymiarową zmienną losową złożoną z niezależnych składników o rozkładach normalnych.
Testowanie hipotez Jacek Szanduła.
Model ekonometryczny Jacek Szanduła.
Korelacje dwóch zmiennych. Korelacje Kowariancja.
Treść dzisiejszego wykładu l Weryfikacja statystyczna modelu ekonometrycznego –błędy szacunku parametrów, –istotność zmiennych objaśniających, –autokorelacja,
Monte Carlo, bootstrap, jacknife. 2 Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej :
Rozkłady statystyk z próby dr Marta Marszałek Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium.
Ekonometria WYKŁAD 3 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Ekonometria stosowana Heteroskedastyczność składnika losowego Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
WYKŁAD Teoria błędów Katedra Geodezji im. K. Weigla ul. Poznańska 2
Modele nieliniowe sprowadzane do liniowych
STATYSTYKA – kurs podstawowy wykład 11
Estymacja parametryczna dr Marta Marszałek Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium Analiz.
Rozkład z próby Jacek Szanduła.
Statystyka matematyczna
Ekonometria stosowana
Statystyka matematyczna
Jednorównaniowy model regresji liniowej
Analiza niepewności pomiarów Zagadnienia statystyki matematycznej
Monte Carlo, bootstrap, jacknife
Korelacja i regresja liniowa
Zapis prezentacji:

Elementy Rachunku Prawdopodobieństwa i Statystyki Wykład 10 Estymator wariancji, rozkład wariancji z prób (cd) Rozkłady częstości prob., histogramy Praktyczne zastosowanie – pomiar laboratoryjny Tomasz Szumlak, WFiIS, 12/04/2013

Wariancja z próby Niech zmienne losowe: reprezentują losową próbkę o rozmiarze n, pobraną z pewnej populacji. Z.L., która reprezentuje wariancję próbki dana jest jak poniżej: Mamy jednak poważny problem z tak zdefiniowaną statystyką – obciążenie Blisko wariancji populacji dla dużych próbek…, możemy użyć lepszego, nieobciążonego estymatora wariancji w postaci:

Wariancja z próby Podobnie jak w przypadku estymatora wartości średniej, możemy pobierać próbki i wyznaczyć dla każdej nich wariancję S2 ( ) Jaki jest rozkład takiej zmiennej losowej? Okazuje się, że można uzyskać bardzo ciekawy wynik, badając inną, związaną z wariancją zmienną losową: Prawdziwe jest wówczas, następujące twierdzenie: Jeżeli pobieramy próbki losowe o rozmiarze n z populacji charakteryzującej się rozkładem normalnym, wówczas statystyka zdefiniowana powyżej posiada rozkład „chi-kwadrat” on n-1 stopniach swobody. Rozkład ma szerokie zastosowania przy weryfikacji hipotez statystycznych oraz przy ilościowym testowaniu jakości dopasowania modelu do punktów pomiarowych.

Rozkład Formalnie rozkład ten wprowadzamy w następujący sposób: Rozważmy zmienny losowych o rozkładzie normalnym o wartości oczekiwanej = 0 oraz wariancji = 1, skonstruujmy następującą zmienną losową: Można pokazać, że taka zmienna losowa posiada R.G.P. o postaci: (dla zainteresowanych – jest to szczególna postać tzw. funkcji gamma) Wartość oczekiwana oraz wariancja rozkładu

Rozkład

Odchylenie standardowe estymatora Mała dygresja… Różnica pomiędzy losowaniem ze zwracaniem i bez zwracania nieskończona populacja (lub losowanie ze zwracaniem) skończona populacja w rzeczywistości mamy do czynienia ze skończonymi próbkami, dysponujemy więc estymatorami odchylenia standardowego… Odchylenie standardowe estymatora

Histogramy

Histogramy - wstęp

Formalnie pojęcie histogramu wprowadzone przez Pearson’a Histogramy Formalnie pojęcie histogramu wprowadzone przez Pearson’a Wygodne i proste narzędzie do wizualizacji i kategoryzacji danych Świetny i wydajny estymator R.G.P. dla danego zjawiska losowego (konstruując histogram nie zakładamy z góry nic o rodzaju rozkładu – po prostu zliczamy przypadki i rysujemy…) Wysokość Pigmeja [cm] Liczba Pigmejów Liczba Pigmejów Suma Wysokość Pigmeja [cm]

Trochę praktyki, czyli po co to wszystko…

Podsumujmy co wiemy… (uproszczona wersja, uściślimy podczas dyskusji na temat estymacji) Typowy problem – mierzymy nieznaną wielkość X Wynikiem pomiaru jest pewna wielkość doświadczalna – czyli najlepsza estymata (jeżeli eksperyment przeprowadzony jest dobrze…) Estymata – wartość estymatora Statystyka pozwala na podstawie eksperymentu estymować prawdziwą wartość mierzonej wielkości Jeżeli mierzymy daną wielkość w sposób pośredni (przypadek Z.L. niezależnych):

Kilka typowych przypadków Dla ogólności założymy, że zmienne mogą być skorelowane (ograniczymy się za to do dwóch Z.L.) Zapiszmy więc (por. wykład dotyczący macierzy kowariancji) Zakładamy, że znamy (z pomiarów) parametry rozkładów jakim podlegają zmienne niezależne, znane są więc odchylenia standardowe Interesuje nas odchylenie standardowe zmiennej u: Możemy (zakładając „małe” odchylenia standardowe) rozwinąć powyższą różnicę: Wstawiając do powyższego:

Kilka typowych przypadków… Najczęściej mamy do czynienia z prostymi funkcjami: suma, różnica, iloczyn, iloraz: